117 research outputs found

    Toxicity of five anilines to crustaceans, protozoa and bacteria

    Get PDF
    Aromatic amines (anilines and related derivates) are an important class of environmental pollutants that can be released to the aquatic environment as industrial effluents or as breakdown products of pesticides and dyes. The toxicity of aniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline and 3,5-dichloroaniline towards a multitrophic test battery comprised of bacteria Aliivibrio fischeri (formerly Vibrio fischeri), a ciliated protozoan Tetrahymena thermophila and two crustaceans (Daphnia magna and Thamnocephalus platyurus) were investigated. Under the applied test conditions, the toxicity of the anilines notably varied among the test species. The bacteria and protozoa were much less sensitive towards the anilines than the crustaceans: EC50 values 13–403 mg L-1 versus 0.13–15.2 mg L-1. No general tendency between toxicity and the chemical structure of the anilines (the degree of chloro-substitution and the position of the chloro-substituents) was found in the case of all the tested aquatic species. The replacement of the artificial test medium (ATM) by the river water remarkably decreased the toxicity of anilines to crustaceans but not to protozoa. This research is part of the EU 6th Framework Integrated Project OSIRIS, in which ecotoxicogenomic studies of anilines (e.g., for Daphnia magna) will also be performed that may help to clarify the mechanisms of toxicity of different anilines

    Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials.

    Get PDF
    Bacterial resistance to antimicrobial therapies is an increasing clinical problem. This is as true for topical applications as it is for systemic therapy. Topically, copper ions may be effective and cheap antimicrobials that act through multiple pathways thereby limiting opportunities to bacteria for resistance. However, the chemistry of copper does not lend itself to facile formulations that will readily release copper ions at biologically compatible pHs. Here we have developed nanoparticulate copper hydroxide adipate tartrate (CHAT) as a cheap, safe and readily synthesised material that should enable antimicrobial copper ion release in an infected wound environment. First, we synthesised CHAT and showed that this had disperse aquated particle sizes of 2-5 nm, and mean zeta potential of -40 mV. Next, when diluted into bacterial medium, CHAT demonstrated similar efficacy to copper chloride against Escherichia coli and Staphylococcus aureus, with dose-dependent activity occurring mostly around 12.5-50 mg/L of copper. Indeed, at these levels, CHAT very rapidly dissolved and, as confirmed by a bacterial copper biosensor, showed identical intracellular loading to copper ions derived from copper chloride. However, when formulated at 250 mg/L in a topically-applied matrix, namely hydroxyethyl cellulose, the benefit of CHAT over copper chloride was apparent. The former yielded rapid sustained release of copper within the bactericidal range but the copper chloride, which formed insoluble precipitates at such concentration and pH, achieved a maximum release of 10 ± 7 mg/L copper by 24 hours. We provide a practical formulation for topical copper - based antimicrobial therapy. Further studies, especially in vivo, are merited

    LuxCDABE—Transformed Constitutively Bioluminescent Escherichia coli for Toxicity Screening: Comparison with Naturally Luminous Vibrio fischeri

    Get PDF
    We show that in vitro toxicity assay based on inhibition of the bioluminescence of recombinant Escherichia coli encoding thermostable luciferase from Photorhabdus luminescens is a versatile alternative to Vibrio fischeri Microtoxℱ test. Performance of two luxCDABE-transformed E. coli MC1061 constructs (pDNlux) and (pSLlux) otherwise identical, but having 100-fold different background luminescence was compared with the performance of V. fischeri. The microplate luminometer and a kinetic Flash-Assay test format was used that differently from Microtox test is also applicable for high throughput analysis. Toxic effects (30-s till 30-min EC50) of four heavy metals (Zn, Cd, Hg, Cu) and three organic chemicals (aniline, 3,5-dichloroaniline and 3,5-dichlorophenol) were studied. Both E. coli strains had comparable sensitivity and the respective 30-min EC50 values highly correlated (log-log R2 = 0.99; p < 0.01) showing that the sensitivity of the recombinant bacteria towards chemicals analyzed did not depend on the bioluminescence level of the recombinant cells. The most toxic chemical for all used bacterial strains (E. coli, V. fischeri) was mercury whereas the lowest EC50 values for Hg (0.04–0.05 mg/L) and highest EC50 values for aniline (1,300–1,700 mg/L) were observed for E. coli strains. Despite of that, toxicity results obtained with both E. coli strains (pSLlux and pDNlux) significantly correlated with V. fischeri results (log-log R2 = 0.70/0.75; p < 0.05/0.01). The use of amino acids (0.25%) and glucose (0.05%)-supplemented M9 medium instead of leucine-supplemented saline significantly (p < 0.05) reduced the apparent toxicity of heavy metals to both E. coli strains up to three orders of magnitude, but had little or no complexing effect on organic compounds. Thus, P. luminescens luxCDABE-transformed E. coli strains can be successfully used for the acute toxicity screening of various types of organic chemicals and heavy metals and can replace V. fischeri in certain cases where the thermostability of luciferase >30 °C is crucial. The kinetic Flash Assay test format of the bioluminescence inhibition assay facilitates high throughput analysis. The assay medium, especially in case of testing heavy metals should be a compromise: optimal for the viability/luminescence of the recombinant test strain and of minimum complexing potential

    Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports

    Get PDF
    This review was initiated by the COST action CA15114 AMICI “Anti-Microbial Coating Innovations to prevent infectious diseases,” where one important aspect is to analyze ecotoxicological impacts of antimicrobial coatings (AMCs) to ensure their sustainable use. Scopus database was used to collect scientific literature on the types and uses of AMCs, while market reports were used to collect data on production volumes. Special attention was paid on data obtained for the release of the most prevalent ingredients of AMCs into the aqueous phase that was used as the proxy for their possible ecotoxicological effects. Based on the critical analysis of 2,720 papers, it can be concluded that silver-based AMCs are by far the most studied and used coatings followed by those based on titanium, copper, zinc, chitosan and quaternary ammonium compounds. The literature analysis pointed to biomedicine, followed by marine industry, construction industry (paints), food industry and textiles as the main fields of application of AMCs. The published data on ecotoxicological effects of AMCs was scarce, and also only a small number of the papers provided information on release of antimicrobial ingredients from AMCs. The available release data allowed to conclude that silver, copper and zinc are often released in substantial amounts (up to 100%) from the coatings to the aqueous environment. Chitosan and titanium were mostly not used as active released ingredients in AMCs, but rather as carriers for other release-based antimicrobial ingredients (e.g., conventional antibiotics). While minimizing the prevalence of healthcare-associated infections appeared to be the most prosperous field of AMCs application, the release of environmentally hazardous ingredients of AMCs into hospital wastewaters and thus, also the environmental risks associated with AMCs, comprise currently only a fraction of the release and risks of traditional disinfectants. However, being proactive, while the use of antimicrobial/antifouling coatings could currently pose ecotoxicological effects mainly in marine applications, the broad use of AMCs in other applications like medicine, food packaging and textiles should be postponed until reaching evidences on the (i) profound efficiency of these materials in controlling the spread of pathogenic microbes and (ii) safety of AMCs for the human and ecosystems

    Dissolution of Silver Nanowires and Nanospheres Dictates Their Toxicity to Escherichia coli

    Get PDF
    Silver nanoparticles are extensively used in antibacterial applications. However, the mechanisms of their antibacterial action are not yet fully explored. We studied the solubility-driven toxicity of 100 × 6100 nm (mean primary diameter × length) silver nanowires (NWs) to recombinant bioluminescent Escherichia coli as a target representative of enteric pathogens. The bacteria were exposed to silver nanostructures in water to exclude the speciation-driven alterations. Spherical silver nanoparticles (83 nm mean primary size) were used as a control for the effect of NPs shape. Toxicity of both Ag NWs and spheres to E. coli was observed at similar nominal concentrations: the 4h EC50 values, calculated on the basis of inhibition of bacterial bioluminescence, were 0.42 ± 0.06 and 0.68 ± 0.01 mg Ag/L, respectively. Dissolution and bioavailability of Ag from NWs and nanospheres, analyzed with AAS or Ag-sensor bacteria, respectively, suggested that the toxic effects were caused by solubilized Ag + ions. Moreover, the antibacterial activities of Ag NWs suspension and its ultracentrifuged particle-free supernatant were equal. The latter indicated that the toxic effects of ∌80-100 nm Ag nanostructures to Escherichia coli were solely dependent on their dissolution and no shape-induced/related effects were observed. Yet, additional nanospecific effects could come into play in case of smaller nanosilver particles

    Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles : Magnetic and safety properties

    Get PDF
    Spherical nickel particles with size in the range of 100-400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.Peer reviewe

    Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review

    Get PDF
    • 

    corecore