48 research outputs found

    Medication use in uncontrolled pediatric asthma:Results from the SysPharmPediA study

    Get PDF
    Background: Uncontrolled pediatric asthma has a large impact on patients and their caregivers. More insight into determinants of uncontrolled asthma is needed. We aim to compare treatment regimens, inhaler techniques, medication adherence and other characteristics of children with controlled and uncontrolled asthma in the: Systems Pharmacology approach to uncontrolled Paediatric Asthma (SysPharmPediA) study. Material and methods: 145 children with moderate to severe doctor-diagnosed asthma (91 uncontrolled and 54 controlled) aged 6–17 years were enrolled in this multicountry, (Germany, Slovenia, Spain, and the Netherlands) observational, case-control study. The definition of uncontrolled asthma was based on asthma symptoms and/or exacerbations in the past year. Patient-reported adherence and clinician-reported medication use were assessed, as well as lung function and inhalation technique. A logistic regression model was fitted to assess determinants of uncontrolled pediatric asthma. Results: Children in higher asthma treatment steps had a higher risk of uncontrolled asthma (OR (95%CI): 3.30 (1.56–7.19)). The risk of uncontrolled asthma was associated with a larger change in FEV1% predicted post and pre-salbutamol (OR (95%CI): 1.08 (1.02–1.15)). Adherence and inhaler techniques were not associated with risk of uncontrolled asthma in this population. Conclusion: This study showed that children with uncontrolled moderate-to-severe asthma were treated in higher treatment steps compared to their controlled peers, but still showed a higher reversibility response to salbutamol. Self-reported adherence and inhaler technique scores did not differ between controlled and uncontrolled asthmatic children. Other determinants, such as environmental factors and differences in biological profiles, may influence the risk of uncontrolled asthma in this moderate to severe asthmatic population

    Classifying asthma control using salivary and fecal bacterial microbiome in children with moderate-to-severe asthma

    Get PDF
    Background: Uncontrolled asthma can lead to severe exacerbations and reduced quality of life. Research has shown that the microbiome may be linked with asthma characteristics; however, its association with asthma control has not been explored. We aimed to investigate whether the gastrointestinal microbiome can be used to discriminate between uncontrolled and controlled asthma in children. Methods: 143 and 103 feces samples were obtained from 143 children with moderate-to-severe asthma aged 6 to 17 years from the SysPharmPediA study. Patients were classified as controlled or uncontrolled asthmatics, and their microbiome at species level was compared using global (alpha/beta) diversity, conventional differential abundance analysis (DAA, analysis of compositions of microbiomes with bias correction), and machine learning [Recursive Ensemble Feature Selection (REFS)]. Results: Global diversity and DAA did not find significant differences between controlled and uncontrolled pediatric asthmatics. REFS detected a set of taxa, including Haemophilus and Veillonella, differentiating uncontrolled and controlled asthma with an average classification accuracy of 81% (saliva) and 86% (feces). These taxa showed enrichment in taxa previously associated with inflammatory diseases for both sampling compartments, and with COPD for the saliva samples. Conclusion: Controlled and uncontrolled children with asthma can be differentiated based on their gastrointestinal microbiome using machine learning, specifically REFS. Our results show an association between asthma control and the gastrointestinal microbiome. This suggests that the gastrointestinal microbiome may be a potential biomarker for treatment responsiveness and thereby help to improve asthma control in children

    An in vitro collagen perfusion wound biofilm model; with applications for antimicrobial studies and microbial metabolomics

    Get PDF
    BackgroundThe majority of in vitro studies of medically relevant biofilms involve the development of biofilm on an inanimate solid surface. However, infection in vivo consists of biofilm growth on, or suspended within, the semi-solid matrix of the tissue, whereby current models do not effectively simulate the nature of the in vivo environment. This paper describes development of an in vitro method for culturing wound associated microorganisms in a system that combines a semi-solid collagen gel matrix with continuous flow of simulated wound fluid. This enables culture of wound associated reproducible steady state biofilms under conditions that more closely simulate the dynamic wound environment. To demonstrate the use of this model the antimicrobial kinetics of ceftazidime, against both mature and developing Pseudomonas aeruginosa biofilms, was assessed. In addition, we have shown the potential application of this model system for investigating microbial metabolomics by employing selected ion flow tube mass spectrometry (SIFT-MS) to monitor ammonia and hydrogen cyanide production by Pseudomonas aeruginosa biofilms in real-time. ResultsThe collagen wound biofilm model facilitates growth of steady-state reproducible Pseudomonas aeruginosa biofilms under wound like conditions. A maximum biofilm density of 1010 cfu slide-1 was achieved by 30 hours of continuous culture and maintained throughout the remainder of the experiment. Treatment with ceftazidime at a clinically relevant dose resulted in a 1.2 – 1.6 log reduction in biofilm density at 72 hours compared to untreated controls. Treatment resulted in loss of complex biofilm architecture and morphological changes to bacterial cells, visualised using confocal microscopy. When monitoring the biofilms using SIFT-MS, ammonia and hydrogen cyanide levels peaked at 12 hours at 2273 ppb (±826.4) and 138 ppb (±49.1) respectively and were detectable throughout experimentation. ConclusionsThe collagen wound biofilm model has been developed to facilitate growth of reproducible biofilms under wound-like conditions. We have successfully used this method to: (1) evaluate antimicrobial efficacy and kinetics, clearly demonstrating the development of antimicrobial tolerance in biofilm cultures; (2) characterise volatile metabolite production by P. aeruginosa biofilms, demonstrating the potential use of this method in metabolomics studies

    Epigenome-Wide Association Studies of the Fractional Exhaled Nitric Oxide and Bronchodilator Drug Response in Moderate-to-Severe Pediatric Asthma

    Get PDF
    Asthma is the most prevalent pediatric chronic disease. Bronchodilator drug response (BDR) and fractional exhaled nitric oxide (FeNO) are clinical biomarkers of asthma. Although DNA methylation (DNAm) contributes to asthma pathogenesis, the influence of DNAm on BDR and FeNO is scarcely investigated. This study aims to identify DNAm markers in whole blood associated either with BDR or FeNO in pediatric asthma. We analyzed 121 samples from children with moderate-to-severe asthma. The association of genome-wide DNAm with BDR and FeNO has been assessed using regression models, adjusting for age, sex, ancestry, and tissue heterogeneity. Cross-tissue validation was assessed in 50 nasal samples. Differentially methylated regions (DMRs) and enrichment in traits and biological pathways were assessed. A false discovery rate (FDR) < 0.1 and a genome-wide significance threshold of p < 9 × 10−8 were used to control for false-positive results. The CpG cg12835256 (PLA2G12A) was genome-wide associated with FeNO in blood samples (coefficient= −0.015, p = 2.53 × 10−9) and nominally associated in nasal samples (coefficient = −0.015, p = 0.045). Additionally, three CpGs were suggestively associated with BDR (FDR < 0.1). We identified 12 and four DMRs associated with FeNO and BDR (FDR < 0.05), respectively. An enrichment in allergic and inflammatory processes, smoking, and aging was observed. We reported novel associations of DNAm markers associated with BDR and FeNO enriched in asthma-related processes

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Treatment response heterogeneity in asthma: the role of genetic variation

    No full text
    Introduction: Asthmatic patients show a large heterogeneity in response to asthma medication. Rapidly evolving genotyping technologies have led to the identification of various genetic variants associated with treatment outcomes.Areas covered: This review focuses on the current knowledge of genetic variants influencing treatment response to the most commonly used asthma medicines: short- and long-acting beta-2 agonists (SABA/LABA), inhaled corticosteroids (ICS) and leukotriene modifiers. This review shows that various genetic variants have been identified, but none are currently used to guide asthma treatment. One of the most promising genetic variants is the Arg16 variant in the ADRB2 gene to guide LABA treatment in asthmatic children.Expert commentary: Poor replication of initially promising results and the low fraction of variability accounted for by single genetic variants inhibit pharmacogenetic findings to reach the asthma clinic. Nevertheless, the identification of genetic variation influencing treatment response does provide more insights in the complex processes underlying response and might identify novel targets for treatment. There is a need to report measures of clinical validity, to perform precision-medicine guided trials, as well as to understand how genetic variation interacts with environmental factors. In addition, systems biology approaches might be able to show a more complete picture of these complex interaction

    The cross-talk between microbiome and asthm : exploring associations and challenges

    No full text
    With the advancement of high-throughput DNA/RNA sequencing and computational analysis techniques, commensal bacteria are now considered almost as important as pathological ones. Understanding the interaction between these bacterial microbiota, host and asthma is crucial to reveal their role in asthma pathophysiology. Several airway and/or gut microbiome studies have shown associations between certain bacterial taxa and asthma. However, challenges remain before gained knowledge from these studies can be implemented into clinical practice, such as inconsistency between studies in choosing sampling compartments and/or sequencing approaches, variability of results in asthma studies, and not taking into account medication intake and diet composition especially when investigating gut microbiome. Overcoming those challenges, will help to better understand the complex asthma disease process. The therapeutic potential of using pro- and pre-biotics to prevent or reduce risk of asthma exacerbations requires further investigation. This review will focus on methodological issues regarding setting up a microbiome study, recent developments in asthma bacterial microbiome studies, challenges and future therapeutic potential. This article is protected by copyright. All rights reserved

    Omics for the future in asthma

    No full text
    Asthma is a common, complex, multifaceted disease. It comprises multiple phenotypes, which might benefit from treatment with different types of innovative targeted therapies. Refining these phenotypes and understanding their underlying biological structure would help to apply precision medicine approaches. Using different omics methods, such as (epi)genomics, transcriptomics, proteomics, metabolomics, microbiomics, and exposomics, allowed to view and investigate asthma from diverse angles. Technological advancement led to a large increase in the application of omics studies in the asthma field. Although the use of omics technologies has reduced the gap between bench to bedside, several design and methodological challenges still need to be tackled before omics can be applied in asthma patient care. Collaborating under a centralized harmonized work frame (such as in consortia, under consistent methodologies) could help worldwide research teams to tackle these challenges. In this review, we discuss the transition of single biomarker research to multi-omics studies. In addition, we deliberate challenges such as the lack of standardization of sampling and analytical methodologies and validation of findings, which comes in between omics and personalized patient care. The future of omics in asthma is encouraging but not completely clear with some unanswered questions, which have not been adequately addressed before. Therefore, we highlight these questions and emphasize on the importance of fulfilling them

    Biomarkers and asthma management: analysis and potential applications

    No full text
    PURPOSE OF REVIEW: Asthma features a high degree of heterogeneity in both pathophysiology and therapeutic response, resulting in many asthma patients being treated inadequately. Biomarkers indicative of underlying pathological processes could be used to identify disease subtypes, determine prognosis and to predict or monitor treatment response. However, the newly identified as well as more established biomarkers have different applications and limitations. RECENT FINDINGS: Conventional markers for type 2-high asthma, such as blood eosinophils, fraction of exhaled nitric oxide, serum IgE and periostin, feature limited sensitivity and specificity despite their significant correlations. More distinctive models have been developed by combining biomarkers and/or using omics techniques. Recently, a model with a positive predictive value of 100% for identification of type 2-high asthma based on a combination of minimally invasive biomarkers was developed. SUMMARY: Individualisation of asthma treatment regimens on the basis of biomarkers is necessary to improve asthma control. However, the suboptimal properties of currently available conventional biomarkers limit its clinical utility. Newly identified biomarkers and models based on combinations and/or omics analysis must be validated and standardised before they can be routinely applied in clinical practice. The development of robust biomarkers will allow development of more efficacious precision medicine-based treatment approaches for asthma
    corecore