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Abstract
Background: Uncontrolled	asthma	can	lead	to	severe	exacerbations	and	reduced	qual-
ity of life. Research has shown that the microbiome may be linked with asthma char-
acteristics;	however,	 its	association	with	asthma	control	has	not	been	explored.	We	
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1  |  INTRODUC TION

Asthma	 is	 a	 common	 chronic	 airway	 disease	 that	 is	 characterized	
by	 nonspecific	 symptoms	 including	 shortness	 of	 breath,	 wheez-
ing, chest tightness, and coughing, often occurring episodically.1,2 
Treatment	 of	 asthma	 comprises	 two	 aims:	 prevention	 of	 episodes	
and reducing symptoms during such episodes.2	 However,	 due	 to	
the heterogeneity of the disease, selecting the correct medication 
to treat asthma is difficult and often based on a trial and error ap-
proach	 in	accordance	with	the	Global	 Initiative	for	Asthma	(GINA)	
guidelines.2,3 Despite regular medication intake, some patients still 
experience	severe	symptoms.4 In children, this can lead to a reduced 
quality	of	life	and	a	decrease	in	lung	function	later	in	life.5	Therefore,	
the	 Systems	 Pharmacology	 approach	 to	 uncontrolled	 Pediatric	
Asthma	 (SysPharmPediA)	 consortium	 aims	 to	 identify	 biomarkers	
and molecular mechanisms that underlie asthma control using a 
multi-	omics	systems	medicine	approach.6

The	human	microbiome	 is	 influenced	by	many	 factors;	 how-
ever, it is relatively stable and remains identifiable to a person 
over the span of multiple years.7 Earlier research has shown that 
the composition of the microbiome is associated with multiple dis-
eases including cancer, diabetes, cardiovascular disease, and asth-
ma.8– 11 In asthma, the domination of the airway microbiome with 
specific	 taxa	was	 found	 to	 be	 associated	with	 neutrophil	 count	
and lung function, leading to a more severe asthma phenotype.12 
On the contrary, the microbiome may have a protective role in 

asthma.	Germ-	free	mice	models	showed	stronger	hypersensitivity	
and airway inflammation after ovalbumin induction compared to 
mice with a commensal gastrointestinal microbiome.13	Clustering	
of asthmatic patients solely according to their airway microbi-
ome allowed for clusters with distinctions in several clinical and 
demographical features, further proving their relation to asthma 
severity.14

Microbiome data at a species level is sparse in nature, meaning 
that	many	taxa	are	only	detected	in	a	handful	of	samples.	Because	
of	this,	conventional	differential	abundance	and	normalization	meth-
ods used in transcriptomics and proteomics often result in a loss of 
power	when	used	to	analyze	microbiome	data.15,16	Specialized	meth-
ods for microbiome data have been created with varying rates of 
success.15,16	However,	these	specialized	methods	fail	to	capture	the	
interaction	between	microbes	and	perform	their	analysis	per	taxon,	
while these interactions have been shown repeatedly in previous 

Funding information
Agencia	Estatal	de	Investigación;	
ERACoSysMed;	European	Regional	
Development	Fund;	German	Ministry	of	
Education	and	Research	(BMBF),	Grant/
Award	Number:	FKZ	031 L0088;	Instituto	
de	Salud	Carlos	III;	Ministerio	de	Ciencia	
e	Innovación;	Ministry	of	Education,	
Science,	and	Sport	of	the	Republic	of	
Slovenia,	Grant/Award	Number:	C330-	
16-	500106;	Ramón	y	Cajal	Program,	
Grant/Award	Number:	RYC-	2015-	17205;	
Slovenian	Research	Agency,	Grant/Award	
Number:	P3-	0067;	ZonMw,	Grant/Award	
Number:	9003035001;	Instituto	de	Salud	
Carlos	III	(ISCIII)	through	Strategic	Action	
for	Health	Research	(AES)	and	European	
Community	(EC)	within	the	Active	and	
Assisted	Living	(AAL)	Program	framework,	
Grant/Award	Number:	AC15/00058	and	
AC15/00015;	Spanish	Ministry	of	Science	
and	Innovation	(MICINN);	State	Research	
Agency;	European	Union,	Grant/Award	
Number:	SAF2017-	83417R;	Egyptian	
Government	Ph.D.	Scholarships

Editor:	Ömer	Kalayci

aimed to investigate whether the gastrointestinal microbiome can be used to discrimi-
nate between uncontrolled and controlled asthma in children.
Methods: 143	and	103	feces	samples	were	obtained	from	143	children	with	moderate-	
to-	severe	asthma	aged	6	to	17 years	from	the	SysPharmPediA	study.	Patients	were	
classified as controlled or uncontrolled asthmatics, and their microbiome at species 
level	was	compared	using	global	(alpha/beta)	diversity,	conventional	differential	abun-
dance	analysis	(DAA,	analysis	of	compositions	of	microbiomes	with	bias	correction),	
and	machine	learning	[Recursive	Ensemble	Feature	Selection	(REFS)].
Results: Global	diversity	and	DAA	did	not	find	significant	differences	between	con-
trolled	and	uncontrolled	pediatric	asthmatics.	REFS	detected	a	set	of	taxa,	including	
Haemophilus and Veillonella, differentiating uncontrolled and controlled asthma with 
an	average	classification	accuracy	of	81%	(saliva)	and	86%	(feces).	These	taxa	showed	
enrichment	 in	taxa	previously	associated	with	 inflammatory	diseases	for	both	sam-
pling	compartments,	and	with	COPD	for	the	saliva	samples.
Conclusion: Controlled	and	uncontrolled	children	with	asthma	can	be	differentiated	
based	on	their	gastrointestinal	microbiome	using	machine	learning,	specifically	REFS.	
Our results show an association between asthma control and the gastrointestinal 
microbiome.	This	suggests	 that	 the	gastrointestinal	microbiome	may	be	a	potential	
biomarker for treatment responsiveness and thereby help to improve asthma control 
in children.

K E Y W O R D S
asthma: disease management, asthma: treatment

Key Message

Controlled	 and	 uncontrolled	 asthmatics	 can	 be	 distin-
guished based on their gastrointestinal microbiome using 
the	 machine	 learning	 technique,	 Recursive	 Ensemble	
Feature	Selection,	demonstrating	an	association	between	
the microbiome and asthma control.
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literature.16	The	decreasing	cost	of	sequencing	 techniques	has	 led	
to	 a	 general	 increase	 in	 sample	 sizes	 for	microbiome	 research,	 al-
lowing	for	the	use	of	more	complex	machine	learning	techniques.17 
Machine learning has already been shown to successfully identify 
a	 set	 of	 taxa	 related	 to	 type	2	diabetes	 and	 future	 glucose	 incre-
ments.18	However,	machine	 learning	 techniques	 have	 hardly	 been	
employed in asthma microbiome research.

In this study, we performed an analysis on the salivary and fecal 
microbiome	data	of	the	SysPharmPediA	study	to	find	differences	in	
the microbial composition of the gastrointestinal tract of controlled 
and	 uncontrolled	 pediatric	 asthmatics.	 This	 was	 performed	 using	
global diversity measures, a conventional differential abundance 
analysis	 technique,	 and	 an	 ensemble	 machine	 learning	 technique,	
Recursive	Ensemble	Feature	Selection	(REFS).	Specifically,	we	aimed	
to discover a set of potential biomarkers that can predict treatment 
responsiveness to improve asthma control in children and show the 
benefits	of	utilizing	machine	learning	compared	with	that	of	conven-
tional	techniques.

2  |  METHODS

2.1  |  Study design

SysPharmPediA	is	a	multicenter,	prospective,	European	study	with	
the objective of identifying a set of biomarkers to classify pheno-
types of pediatric uncontrolled asthma.6	 Asthmatic	 children	were	
included	in	four	centers	located	in	the	Netherlands,	Germany,	Spain,	
and	Slovenia.	Written	informed	consent	was	provided	by	either	the	
parents/caretakers and/or the study participants themselves. Each 
study center obtained approval from the local ethics committee. 
More details can be found in.6	This	study	is	registered	at	Clini	calTr	
ials.gov	under	the	identifier	NCT04865575.

2.2  |  Participants

One	 hundred	 and	 forty-	three	 out	 of	 145	 participants	 in	 the	
SysPharmPediA	cohort	provided	either	a	saliva	and/or	feces	sample.	
The	 inclusion	criteria	 for	 the	study	population	were	as	 follows:	 (1)	
aged	between	6	and	17 years,	(2)	diagnosed	with	asthma	by	a	doctor,	
and	(3)	under	treatment	with	at	least	step	3	according	to	the	GINA	
guidelines.2	The	participants	were	classified	as	controlled	or	uncon-
trolled	asthmatics	based	on	their	clinical	manifestations.	Controlled	
asthmatics	did	not	have	any	severe	exacerbations	requiring	oral	cor-
tical	steroids	(OCS),	emergency	room	visits,	or	hospitalizations	in	the	
prior	12 months	and	a	score	>19	on	the	(childhood)	asthma	control	
test	 (ACT/cACT).19,20	Uncontrolled	asthmatics	had	at	 least	1	exac-
erbation	requiring	OCS,	emergency	room	visits,	or	hospitalizations	
in	 the	prior	12 months	and	a	score	≤19	on	 the	 (c)ACT.	 In	addition,	
patients	treated	under	step	2	of	the	GINA	guidelines	that	were	hos-
pitalized	for	a	severe	asthma	exacerbation	could	also	be	included	in	
the uncontrolled asthmatics.

2.3  |  Sample preparation, sequencing, and 
read processing

143 saliva samples and 103 feces samples were collected from the 
study	 population.	 A	 detailed	 description	 of	 the	 sample	 prepara-
tion,	sequencing,	and	read	processing	can	be	found	in	Appendix	S1, 
Section	1.	 In	 short,	V3-	V4	hypervariable	 regions	of	 the	16S	 rRNA	
gene	were	amplified	and	sequenced	using	the	MiSeq	v3	2x300	bp	
(Illumina).	Reads	were	cleaned	and	grouped	into	amplicon	sequence	
variants	 (ASVs).	Finally,	ASVs	were	assigned	 taxonomies	using	 the	
Silva	database.21

2.4  |  Statistical analysis

The	composition	of	the	bacterial	microbiome	for	uncontrolled	and	
controlled children with asthma was compared using three levels 
of	 complexity	 (Appendix	 S1,	 Section	3).	 First,	 samples	 as	 a	whole	
were	 compared	using	 global	 diversity	measures	 (alpha/beta	diver-
sity).	 Second,	 individual	 taxa	were	 compared	using	 a	 conventional	
microbiome	 analysis	 technique	 (ANCOM-	BC).	 Finally,	 we	 used	 an	
advanced	machine	 learning	method,	 REFS	 to	 incorporate	 interac-
tions	between	taxa	in	the	models.	If	applicable,	a	significance	thresh-
old of .05 was applied after adjusting for multiple testing using the 
Benjamini–	Hochberg	correction.

3  |  RESULTS

The	baseline	 characteristics	of	 the	 included	patients	 are	 summa-
rized	in	Table 1.	Included	patients	had	a	median	age	of	11.93 years	
(IQR	=	9.65–	14.00),	with	a	median	age	of	12.00	(IQR	=	9.72–	14.00)	
and	11.74	(IQR	=	9.65–	13.84)	for	uncontrolled	and	controlled	asth-
matics,	respectively.	The	patients	were	predominantly	male	(59.4%	
of all patients, 57.3% and 63.0% in uncontrolled and controlled 
asthmatics)	 and	 predominantly	 European;	 however,	 the	 uncon-
trolled	asthmatics	contained	a	higher	percentage	of	non-	European	
participants. In addition, the center of inclusion also showed an 
imbalance	 between	 controlled	 and	 uncontrolled	 asthmatics.	 The	
median	(childhood)	Asthma	Control	Test	((c)ACT)	score	of	the	par-
ticipants	 is	 23.0	 (IQR	=	 19.0–	25.0),	with	 a	median	 score	 of	 20.5	
(IQR	=	17.0–	23.0)	for	uncontrolled	asthmatics	compared	with	24.5	
(IQR	=	23.0–	25.0)	 for	controlled	asthmatics.	Finally,	uncontrolled	
asthmatics	showed	a	higher	percentage	of	omalizumab	medication	
use.

3.1  |  Global diversity measures show no differences  
between controlled and uncontrolled asthmatics

The	 bioinformatics	 pipeline	 showed	 that	 negative	 control	 sam-
ples	 had	 no	 to	minimal	 read	 counts,	 and	 bacterial	 taxa	were	 cor-
rectly identified at the genus level with 100% accuracy in the mock 
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TA B L E  1 Baseline	characteristics	of	the	SysPharmPediA	cohort	from	which	either	a	saliva	or	feces	sample	was	obtained,	classified	into	
uncontrolled and controlled asthmatics.

Total (N = 143)
Uncontrolled asthmatics 
(N = 89)

Controlled asthmatics 
(N = 54) p- Value

Age	in	years

Median	(IQR) 11.9	(9.7,	14.0) 12.0	(9.7,	14.0) 11.7	(9.7,	13.8) .744

Min 6.0 6.0 6.4

Max 17.4 17.3 17.4

Gender

Male 85	(59.4%) 51	(57.3%) 34	(63.0%) .622

Female 58	(40.6%) 38	(42.7%) 20	(37.0%)

Population group

European 107	(74.8%) 59	(66.3%) 48	(88.9%) .018

Latino 10	(7.0%) 7	(7.9%) 3	(5.6%)

African 7	(4.9%) 7	(7.9%) 0	(0.0%)

Asian 2	(1.4%) 1	(1.1%) 1	(1.9%)

Mixed/other 11	(7.7%) 11	(12.4%) 0	(0.0%)

Living	environment

City 57/138	(41.3%) 42/85	(49.4%) 15/53	(28.3%) .072

City	center 10/138	(7.2%) 7/85	(8.2%) 3/53	(5.7%)

Rural	Area 18/138	(13.0%) 11/85	(12.9%) 7/53	(13.2%)

Village 48/138	(34.8%) 23/85	(27.1%) 25/53	(47.2%)

Village/rural	area 5/138	(3.6%) 2/85	(2.4%) 3/53	(5.7%)

Country	of	inclusion

Germany 38	(26.6%) 19	(21.3%) 19	(35.2%) .014

Netherlands 32	(22.4%) 25	(28.1%) 7	(13.0%)

Slovenia 23	(16.1%) 10	(11.2%) 13	(24.1%)

Spain 50	(35.0%) 35	(39.3%) 15	(27.8%)

Start	of	life

Vaginal	birth 111/138	(80.4%) 70/85	(82.4%) 41/53	(77.4%) .618

C-	section 27/138	(19.6%) 15/85	(17.6%) 12/53	(22.6%)

Breastfeeding 101/138	(73.2%) 60/85	(70.6%) 41/53	(77.4%) .499

Breastfeeding	duration	(months) n = 99
7.0	(4.0,	12.0)

n = 60
7.0	(4.0,	12.0)

n = 39
6.0	(4.0,	11.0)

.341

(Childhood)	Asthma	control	test

Median	(IQR) n = 138
23.0	(19.2,	25.0)

n = 86
20.5	(17.2,	23.0)

n = 52
24.5	(23.0,	25.0)

<.001

Allergy	characteristics

Atopic	sensitization 120/136	(88.2%) 75/83	(90.4%) 45/53	(84.9%) .490

Total	IgE	abnormal 98/114	(86.0%) 68/76	(89.5%) 30/38	(78.9%) .215

Food	allergy 29/128	(22.7%) 16/77	(20.8%) 13/51	(25.5%) .683

Aeroallergens 120/138	(87.0%) 75/85	(88.2%) 45/53	(84.9%) .760

Atopic	dermatitis 53/131	(40.5%) 36/84	(42.9%) 17/47	(36.2%) .574

Allergic	rhinitis 101/135	(74.8%) 62/83	(74.7%) 39/52	(75.0%) 1.000

Eosinophil percent n = 125
5.5	(3.4,	8.5)

n = 79
6.0	(3.8,	9.4)

n = 46
5.0	(2.8,	6.7)

.040

Current	asthma	medication

ICS 143	(100.0%) 89	(100.0%) 54	(100.0%) 1.000

SABA 133	(93.0%) 84	(94.4%) 49	(90.7%) .624

LABA 135	(94.4%) 83	(93.3%) 52	(96.3%) .696
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communities.	A	total	of	5088	ASVs	were	identified	including	2507	
ASVs	and	2684	ASVs	in	the	feces	and	saliva	samples,	respectively.	
Bacteroides, Prevotella, and Alistipes were the highest abundant 
bacterial genera in the feces samples, and Prevotella, Neisseria, and 
Haemophilus were the highest abundant genera in the saliva samples 
(Figure 1).	 For	 the	 alpha	 diversity,	 there	were	 no	 statistically	 sig-
nificant differences between the controlled and uncontrolled asth-
matics,	based	on	 the	number	of	observed	unique	ASV	per	sample	
(feces:	p = .17,	saliva:	p = .061)	or	the	Shannon	index	(feces:	p = .51,	
saliva: p = .12)	 (Figure S1).	The	beta	diversity	did	also	not	find	any	

significant differences between the uncontrolled and controlled 
asthmatics	(feces:	p = .586,	saliva:	p = .705,	Figure 2).

3.2  |  Conventional differential abundance analysis 
shows no differentially abundant taxa

For	the	conventional	differential	abundance	analysis,	after	con-
sidering	ASVs	 only	 present	 in	 at	 least	 5%	of	 samples,	 463	 and	
450	ASVs	remained	in	the	feces	and	saliva	samples,	respectively.	

Total (N = 143)
Uncontrolled asthmatics 
(N = 89)

Controlled asthmatics 
(N = 54) p- Value

OCS 3	(2.1%) 3	(3.4%) 0	(0.0%) .446

LTRA 25	(17.5%) 18	(20.2%) 7	(13.0%) .378

Omalizumab 14	(9.8%) 13	(14.6%) 1	(1.9%) .028

Mepolizumab 2	(1.4%) 2	(2.2%) 0	(0.0%) .708

Antibiotics	use

Prenatal 6/126	(4.8%) 2/76	(2.6%) 4/50	(8.0%) .174

From	0	to	2 years	old 53/138	(38.4%) 32/84	(38.1%) 21	(38.9%) .186

Last	2 months 19/137	(13.9%) 14/83	(16.9%) 5	(9.3%) .314

(Secondhand)	smoking

Prenatal 34/114	(29.8%) 19/67	(28.4%) 15/47	(31.9%) .841

From	0	to	2 years	old 30/109	(27.5%) 15/64	(23.4%) 15/45	(33.3%) .234

Present 33/121	(27.3%) 18/72	(25.0%) 15/49	(30.6%) .637

Spirometry	%	predicted,	median	(IQR)

FEV1	pre-	salbutamol n = 140
94.1	(82.8,	103.3)

n = 87
95.4	(82.3,	103.3)

n = 53
92.6	(86.1,	103.3)

.887

FEV1	post-	salbutamol n = 138
99.7	(89.7,	109.1)

n = 86
100.4	(92.1,	108.1)

n = 52
97.6	(89.4,	109.4)

.350

FEV1/FVC	pre-	salbutamol n = 140
95.6	(87.2,	100.3)

n = 87
94.0	(85.9,	99.1)

n = 53
97.2	(89.2,	102.8)

.051

FEV1/FVC	post-	salbutamol n = 138
99.3	(93.1,	103.6)

n = 86
98.9	(90.8,	103.9)

n = 52
99.9	(94.6,	103.5)

.587

Note: p-	Values	were	calculated	with	a	Wilcoxon	rank-	sum	test	for	numerical	variables	and	a	χ2 test for categorical variables.

TA B L E  1 (Continued)

F I G U R E  1 Mean	relative	abundance	of	the	most	abundant	genera	in	the	feces	(A)	and	saliva	(B)	samples.	Genera	with	a	mean	relative	
abundance	of	at	least	1.5%	in	their	compartment	are	shown	individually.	All	other	genera	are	grouped	under	“Other.”
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6 of 10  |     BLANKESTIJN et al.

After	 correction	 for	 batch,	 age,	 sex,	 center	 of	 inclusion,	 living	
environment,	 and	 antibiotic	 use,	 the	 ANCOM-	BC	 function	 re-
vealed no statistically significant differentially abundant species 
between	controlled	and	uncontrolled	asthmatics	(Figure 3).	The	
volcano plots show that after correction for multiple testing, no 
taxa	were	 close	 to	 reaching	 a	 significant	 adjusted	p-	value	 (red	
line, Figure 3).

3.3  |  Taxa selected by REFS show enrichment in 
inflammation- related taxa

The	same	5%	criterion	as	 for	conventional	differential	abundance	
analysis	was	applied	for	REFS,	with	2	datasets	for	both	saliva	and	
fecal samples. One including patients who used antibiotics in the 
last	2	months,	and	one	with	patients	who	used	no	antibiotics	(NA)	

in	 the	 last	 2 months.	 For	 the	 feces	 samples,	 this	 resulted	 in	 463	
(NA:	 451)	ASVs	being	 detected	 in	 103	 (NA:	 87)	 patients.	 For	 the	
saliva	samples,	450	(NA:	436)	ASVs	were	detected	in	143	(NA:	124)	
patients.

Through	iterative	removal	of	the	least	predictive	taxa,	the	REFS	
machine	learning	algorithm	selected	a	number	of	ASVs	(features)	for	
each of the datasets based on the highest accuracy over 10 separate 
runs	 (Figure S2).	The	highest	discrimination	accuracy	by	 the	REFS	
algorithm	was	 85.8%	 (NA:	 86.6)	 for	 the	 feces	 samples	 and	80.9%	
(NA:	 84.1%)	 for	 the	 saliva	 samples.	 Areas	 under	 the	 curve	 (AUC)	
for the individual feature reduction methods are shown in Table S1. 
These	are	considered	as	“very	good”.22	The	highest	accuracies	were	
achieved	by	using	30	 (NA:	29)	 and	37	 (NA:	56)	 taxa	 for	 the	 feces	
and	saliva	samples,	respectively.	These	identified	taxa	include	gen-
era such as Haemophilus, Veillonella, and Rothia.	However,	 there	 is	
only	moderate	overlap	between	the	taxa	found	in	the	samples	with	

F I G U R E  2 Beta	diversity	measure	comparing	the	controlled	and	uncontrolled	asthmatics	for	the	feces	(A)	and	saliva	(B)	samples	using	PCoA	
on	the	Bray–	Curtis	differences.	For	both	sampling	compartments,	no	statistically	significant	differences	were	found	between	the	two	groups.

F I G U R E  3 Volcano	plots	of	the	conventional	differential	abundance	analysis	using	the	ANCOM-	BC	function.	The	gray	dots	represent	
nonsignificant	taxa,	while	the	red	line	represents	an	adjusted	p-	value	of	.05,	the	significance	threshold.	No	significantly	different	taxa	were	
found in either the feces or saliva samples.
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    |  7 of 10BLANKESTIJN et al.

F I G U R E  4 Boxplots	showing	the	abundances	of	the	features	selected	by	the	REFS	machine	learning	algorithm	for	the	feces	(A)	and	
saliva	(B)	samples.	Counts	were	normalized	using	cumulative	sum	scaling	for	visual	purposes	only,	with	the	actual	model	using	a	Z-	score	
transformation.	The	black	horizontal	line	depicts	the	median,	the	triangle	indicates	the	average,	and	the	colored	points	show	outliers.	The	
taxa	are	ordered	according	to	their	predictive	value.
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and without the patients that used antibiotics, 50% and 57% for the 
feces	and	saliva	samples	respectively.	The	normalized	abundance	of	
these	 selected	 taxa	 can	 be	 found	 in	 Figure 4	 (including	 antibiotic	
users)	and	Figure S3	(nonantibiotic	users).

Enrichment	analysis	was	performed	with	the	MicrobiomeAnalyst	
tool23	 with	 the	 genus	 and	 species	 names	 of	 the	 identified	 taxa.	
Tables S2 and S3	show	all	significant	taxon	sets	from	the	feces	and	
saliva	samples	respectively.	Interestingly,	several	taxon	sets	related	
to	 (liver)	 cirrhosis	 are	 prevalent	 in	 both	 the	 feces	 and	 saliva	 sam-
ples.	Other	significantly	enriched	taxon	sets	linked	to	inflammation	
include mucositis, periodontitis, ulcerative colitis, and chronic ob-
structive	pulmonary	disease	(COPD).

4  |  DISCUSSION

In this study, we aimed to show differences in the gastrointestinal 
bacterial microbiome of controlled and uncontrolled asthmatics in 
the	 pediatric	 SysPharmPediA	 cohort.6	 We	 showed	 that	 diversity	
measures and conventional differential abundance analyses were un-
able to discriminate between controlled and uncontrolled asthmatics, 
while	the	machine	learning	technique	REFS	was	able	to	find	sets	of	
taxa	with	predictive	power	for	asthma	control	status.	The	taxa	iden-
tified	showed	enrichment	 in	 taxa	 involved	 in	cirrhosis	 for	both	 the	
feces	and	saliva	samples	and	taxa	involved	in	inflammatory	diseases.

Among	 the	 predictive	 taxa	 in	 the	 saliva	 samples	 were	 the	
Haemophilus and Streptococcus genera. Earlier research has shown 
that	 the	colonization	of	 these	genera	 in	asthma	 is	associated	with	
longer disease duration, poorer lung function, and higher neutrophil 
counts.12	However,	in	our	dataset,	the	abundance	of	these	genera	is	
similar	or	slightly	increased	in	the	controlled	asthmatics.	Species	of	
the Veillonella genus showed both increased and decreased abun-
dances	among	the	predictive	taxa.	This	potentially	reflects	the	con-
flicting conclusions about this genus in literature. Earlier research 
has shown that Veillonella is more abundant in a less severe asthma 
phenotype.14 On the contrary, higher Veillonella abundance in chil-
dren in the airway has been associated with an increased duration of 
asthma episodes.24	The	Rothia genus was also identified in the saliva 
samples, with an increased abundance in the controlled asthmatics. 
Rothia	was	previously	found	to	have	an	anti-	inflammatory	effect	by	
inhibiting	the	activation	of	the	NF-	κB	pathway,25 a major player in 
inflammation and asthma pathophysiology.26

Hu	et	al.	identified	3	genera	associated	with	allergic	rhinitis	in	the	
fecal	microbiome	of	children	at	10 years	old.	Of	these	genera,	one	
(Agathobacter)	 was	 associated	with	 higher	 odds	 of	 having	 allergic	
rhinitis,	and	two	(UCG-	005	and	Christensenellaceae	R-	7	group)	were	
associated with a decrease in the odds of having allergic rhinitis.27	All	
these genera were identified to have predictive value in our study, 
with	two	species	of	UCG-	005	being	the	best	and	fifth-	best	predic-
tors of asthma control in the feces samples.

The	 processing	 of	 the	 input	 by	 machine	 learning	 methods	 is	
often	seen	as	a	black	box.	 It	 is	difficult	 for	humans	 to	understand	
how certain methods make their classification and decisions, with 

fields	attempting	to	uncover	this	black	box	growing	bigger	in	recent	
years.28,29 Interestingly, in our study, the machine learning ensemble 
selected several features that did not show any distinction on their 
own	between	controlled	and	uncontrolled	asthmatics.	This	can	be	
seen	in	two	ASVs	attributed	to	Veillonella atypica in the saliva sam-
ples.	It	is	possible	that	the	predictive	power	of	these	taxa	lies	in	the	
interaction	with	other	taxa,	only	detected	by	machine	learning.	For	
most	of	the	appointed	taxa,	the	differences	between	uncontrolled	
and controlled asthmatics are too small for conventional methods to 
detect.	The	strength	of	the	machine	learning	methods	and	REFS	lies	
in the detection of patterns and interactions that arise from chang-
ing asthma status.

The	strength	of	this	study	lies	in	the	multi-	analytical	approach.	
We	 approached	 the	 microbiome	 using	 diversity	 measures,	 con-
ventional differential abundance analysis, and advanced machine 
learning, performing analysis on the microbiome obtained from mul-
tiple	sources.	We	showed	the	differences	 in	results	between	each	
approach.	While	the	first	 two	approaches	were	not	able	to	detect	
differences,	 REFS	 identified	 taxa	 that	were	 previously	 discovered	
to have been implicated in asthma severity or asthma mechanisms. 
Another	strength	of	this	study	is	the	multinational	European	scope	
of	the	SysPharmPediA	cohort.	Including	patients	from	four	countries	
allows	the	results	to	be	more	generalizable	over	Europe	compared	
to	patient	inclusions	from	only	one	country.	This	is	of	particular	rele-
vance,	as	the	microbiome	is	influenced	by	environmental	exposures	
and cultural differences such as dietary intake and lifestyle.

This	study	is,	however,	not	without	its	limitations.	Firstly,	while	
the microbiome remains sufficiently stable overtime without 
changes in disease status,7 evidence shows that changes in microbi-
ome are already detectable before the onset of asthma symptoms. 
As	a	result,	the	microbiome	of	some	children	in	the	controlled	group	
could have similar microbial composition to uncontrolled asthmat-
ics,	 if	 they	 might	 develop	 exacerbation.	 Secondly,	 for	 machine	
learning	techniques	the	number	of	samples	is	considered	relatively	
low.30	This	puts	the	results	at	risk	of	overfitting.	We	attempted	to	
prevent overfitting as much as possible by applying an ensemble 
of	classifier	methods,	10-	fold	cross-	validation,	and	using	different	
classifier	methods	for	training	and	testing.	This	might	not,	however,	
have	led	to	full	removal	of	overfitting,	as	the	overlap	between	taxa	
before and after removal of the patients with antibiotics was only 
around	55%.	Therefore,	validating	the	results	in	external	cohorts	is	
needed to reach definitive conclusions.

In conclusion, we have shown that the gastrointestinal micro-
biome can be used to discriminate between controlled and un-
controlled	 asthmatics	 using	 machine	 learning.	 This	 suggests	 that	
machine	 learning	 techniques	 can	 provide	 complementary	 insights	
into the link between the community of gastrointestinal bacteria 
and	asthma	control,	where	conventional	techniques	fail.	This	study	
suggests that the gastrointestinal microbiome can be a potential bio-
marker for treatment responsiveness and thereby help to improve 
asthma	control	 in	children.	However,	 refining	of	 the	 taxa	sets	and	
careful validation are needed before this can be applied in clinical 
diagnostics and treatment.
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