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Abstract
Background: Uncontrolled asthma can lead to severe exacerbations and reduced qual-
ity of life. Research has shown that the microbiome may be linked with asthma char-
acteristics; however, its association with asthma control has not been explored. We 
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1  |  INTRODUC TION

Asthma is a common chronic airway disease that is characterized 
by nonspecific symptoms including shortness of breath, wheez-
ing, chest tightness, and coughing, often occurring episodically.1,2 
Treatment of asthma comprises two aims: prevention of episodes 
and reducing symptoms during such episodes.2 However, due to 
the heterogeneity of the disease, selecting the correct medication 
to treat asthma is difficult and often based on a trial and error ap-
proach in accordance with the Global Initiative for Asthma (GINA) 
guidelines.2,3 Despite regular medication intake, some patients still 
experience severe symptoms.4 In children, this can lead to a reduced 
quality of life and a decrease in lung function later in life.5 Therefore, 
the Systems Pharmacology approach to uncontrolled Pediatric 
Asthma (SysPharmPediA) consortium aims to identify biomarkers 
and molecular mechanisms that underlie asthma control using a 
multi-omics systems medicine approach.6

The human microbiome is influenced by many factors; how-
ever, it is relatively stable and remains identifiable to a person 
over the span of multiple years.7 Earlier research has shown that 
the composition of the microbiome is associated with multiple dis-
eases including cancer, diabetes, cardiovascular disease, and asth-
ma.8–11 In asthma, the domination of the airway microbiome with 
specific taxa was found to be associated with neutrophil count 
and lung function, leading to a more severe asthma phenotype.12 
On the contrary, the microbiome may have a protective role in 

asthma. Germ-free mice models showed stronger hypersensitivity 
and airway inflammation after ovalbumin induction compared to 
mice with a commensal gastrointestinal microbiome.13 Clustering 
of asthmatic patients solely according to their airway microbi-
ome allowed for clusters with distinctions in several clinical and 
demographical features, further proving their relation to asthma 
severity.14

Microbiome data at a species level is sparse in nature, meaning 
that many taxa are only detected in a handful of samples. Because 
of this, conventional differential abundance and normalization meth-
ods used in transcriptomics and proteomics often result in a loss of 
power when used to analyze microbiome data.15,16 Specialized meth-
ods for microbiome data have been created with varying rates of 
success.15,16 However, these specialized methods fail to capture the 
interaction between microbes and perform their analysis per taxon, 
while these interactions have been shown repeatedly in previous 
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aimed to investigate whether the gastrointestinal microbiome can be used to discrimi-
nate between uncontrolled and controlled asthma in children.
Methods: 143 and 103 feces samples were obtained from 143 children with moderate-
to-severe asthma aged 6 to 17 years from the SysPharmPediA study. Patients were 
classified as controlled or uncontrolled asthmatics, and their microbiome at species 
level was compared using global (alpha/beta) diversity, conventional differential abun-
dance analysis (DAA, analysis of compositions of microbiomes with bias correction), 
and machine learning [Recursive Ensemble Feature Selection (REFS)].
Results: Global diversity and DAA did not find significant differences between con-
trolled and uncontrolled pediatric asthmatics. REFS detected a set of taxa, including 
Haemophilus and Veillonella, differentiating uncontrolled and controlled asthma with 
an average classification accuracy of 81% (saliva) and 86% (feces). These taxa showed 
enrichment in taxa previously associated with inflammatory diseases for both sam-
pling compartments, and with COPD for the saliva samples.
Conclusion: Controlled and uncontrolled children with asthma can be differentiated 
based on their gastrointestinal microbiome using machine learning, specifically REFS. 
Our results show an association between asthma control and the gastrointestinal 
microbiome. This suggests that the gastrointestinal microbiome may be a potential 
biomarker for treatment responsiveness and thereby help to improve asthma control 
in children.

K E Y W O R D S
asthma: disease management, asthma: treatment

Key Message

Controlled and uncontrolled asthmatics can be distin-
guished based on their gastrointestinal microbiome using 
the machine learning technique, Recursive Ensemble 
Feature Selection, demonstrating an association between 
the microbiome and asthma control.
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literature.16 The decreasing cost of sequencing techniques has led 
to a general increase in sample sizes for microbiome research, al-
lowing for the use of more complex machine learning techniques.17 
Machine learning has already been shown to successfully identify 
a set of taxa related to type 2 diabetes and future glucose incre-
ments.18 However, machine learning techniques have hardly been 
employed in asthma microbiome research.

In this study, we performed an analysis on the salivary and fecal 
microbiome data of the SysPharmPediA study to find differences in 
the microbial composition of the gastrointestinal tract of controlled 
and uncontrolled pediatric asthmatics. This was performed using 
global diversity measures, a conventional differential abundance 
analysis technique, and an ensemble machine learning technique, 
Recursive Ensemble Feature Selection (REFS). Specifically, we aimed 
to discover a set of potential biomarkers that can predict treatment 
responsiveness to improve asthma control in children and show the 
benefits of utilizing machine learning compared with that of conven-
tional techniques.

2  |  METHODS

2.1  |  Study design

SysPharmPediA is a multicenter, prospective, European study with 
the objective of identifying a set of biomarkers to classify pheno-
types of pediatric uncontrolled asthma.6 Asthmatic children were 
included in four centers located in the Netherlands, Germany, Spain, 
and Slovenia. Written informed consent was provided by either the 
parents/caretakers and/or the study participants themselves. Each 
study center obtained approval from the local ethics committee. 
More details can be found in.6 This study is registered at Clini​calTr​
ials.gov under the identifier NCT04865575.

2.2  |  Participants

One hundred and forty-three out of 145 participants in the 
SysPharmPediA cohort provided either a saliva and/or feces sample. 
The inclusion criteria for the study population were as follows: (1) 
aged between 6 and 17 years, (2) diagnosed with asthma by a doctor, 
and (3) under treatment with at least step 3 according to the GINA 
guidelines.2 The participants were classified as controlled or uncon-
trolled asthmatics based on their clinical manifestations. Controlled 
asthmatics did not have any severe exacerbations requiring oral cor-
tical steroids (OCS), emergency room visits, or hospitalizations in the 
prior 12 months and a score >19 on the (childhood) asthma control 
test (ACT/cACT).19,20 Uncontrolled asthmatics had at least 1 exac-
erbation requiring OCS, emergency room visits, or hospitalizations 
in the prior 12 months and a score ≤19 on the (c)ACT. In addition, 
patients treated under step 2 of the GINA guidelines that were hos-
pitalized for a severe asthma exacerbation could also be included in 
the uncontrolled asthmatics.

2.3  |  Sample preparation, sequencing, and 
read processing

143 saliva samples and 103 feces samples were collected from the 
study population. A detailed description of the sample prepara-
tion, sequencing, and read processing can be found in Appendix S1, 
Section 1. In short, V3-V4 hypervariable regions of the 16S rRNA 
gene were amplified and sequenced using the MiSeq v3 2x300 bp 
(Illumina). Reads were cleaned and grouped into amplicon sequence 
variants (ASVs). Finally, ASVs were assigned taxonomies using the 
Silva database.21

2.4  |  Statistical analysis

The composition of the bacterial microbiome for uncontrolled and 
controlled children with asthma was compared using three levels 
of complexity (Appendix  S1, Section 3). First, samples as a whole 
were compared using global diversity measures (alpha/beta diver-
sity). Second, individual taxa were compared using a conventional 
microbiome analysis technique (ANCOM-BC). Finally, we used an 
advanced machine learning method, REFS to incorporate interac-
tions between taxa in the models. If applicable, a significance thresh-
old of .05 was applied after adjusting for multiple testing using the 
Benjamini–Hochberg correction.

3  |  RESULTS

The baseline characteristics of the included patients are summa-
rized in Table 1. Included patients had a median age of 11.93 years 
(IQR = 9.65–14.00), with a median age of 12.00 (IQR = 9.72–14.00) 
and 11.74 (IQR = 9.65–13.84) for uncontrolled and controlled asth-
matics, respectively. The patients were predominantly male (59.4% 
of all patients, 57.3% and 63.0% in uncontrolled and controlled 
asthmatics) and predominantly European; however, the uncon-
trolled asthmatics contained a higher percentage of non-European 
participants. In addition, the center of inclusion also showed an 
imbalance between controlled and uncontrolled asthmatics. The 
median (childhood) Asthma Control Test ((c)ACT) score of the par-
ticipants is 23.0 (IQR =  19.0–25.0), with a median score of 20.5 
(IQR = 17.0–23.0) for uncontrolled asthmatics compared with 24.5 
(IQR = 23.0–25.0) for controlled asthmatics. Finally, uncontrolled 
asthmatics showed a higher percentage of omalizumab medication 
use.

3.1  |  Global diversity measures show no differences  
between controlled and uncontrolled asthmatics

The bioinformatics pipeline showed that negative control sam-
ples had no to minimal read counts, and bacterial taxa were cor-
rectly identified at the genus level with 100% accuracy in the mock 
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TA B L E  1 Baseline characteristics of the SysPharmPediA cohort from which either a saliva or feces sample was obtained, classified into 
uncontrolled and controlled asthmatics.

Total (N = 143)
Uncontrolled asthmatics 
(N = 89)

Controlled asthmatics 
(N = 54) p-Value

Age in years

Median (IQR) 11.9 (9.7, 14.0) 12.0 (9.7, 14.0) 11.7 (9.7, 13.8) .744

Min 6.0 6.0 6.4

Max 17.4 17.3 17.4

Gender

Male 85 (59.4%) 51 (57.3%) 34 (63.0%) .622

Female 58 (40.6%) 38 (42.7%) 20 (37.0%)

Population group

European 107 (74.8%) 59 (66.3%) 48 (88.9%) .018

Latino 10 (7.0%) 7 (7.9%) 3 (5.6%)

African 7 (4.9%) 7 (7.9%) 0 (0.0%)

Asian 2 (1.4%) 1 (1.1%) 1 (1.9%)

Mixed/other 11 (7.7%) 11 (12.4%) 0 (0.0%)

Living environment

City 57/138 (41.3%) 42/85 (49.4%) 15/53 (28.3%) .072

City center 10/138 (7.2%) 7/85 (8.2%) 3/53 (5.7%)

Rural Area 18/138 (13.0%) 11/85 (12.9%) 7/53 (13.2%)

Village 48/138 (34.8%) 23/85 (27.1%) 25/53 (47.2%)

Village/rural area 5/138 (3.6%) 2/85 (2.4%) 3/53 (5.7%)

Country of inclusion

Germany 38 (26.6%) 19 (21.3%) 19 (35.2%) .014

Netherlands 32 (22.4%) 25 (28.1%) 7 (13.0%)

Slovenia 23 (16.1%) 10 (11.2%) 13 (24.1%)

Spain 50 (35.0%) 35 (39.3%) 15 (27.8%)

Start of life

Vaginal birth 111/138 (80.4%) 70/85 (82.4%) 41/53 (77.4%) .618

C-section 27/138 (19.6%) 15/85 (17.6%) 12/53 (22.6%)

Breastfeeding 101/138 (73.2%) 60/85 (70.6%) 41/53 (77.4%) .499

Breastfeeding duration (months) n = 99
7.0 (4.0, 12.0)

n = 60
7.0 (4.0, 12.0)

n = 39
6.0 (4.0, 11.0)

.341

(Childhood) Asthma control test

Median (IQR) n = 138
23.0 (19.2, 25.0)

n = 86
20.5 (17.2, 23.0)

n = 52
24.5 (23.0, 25.0)

<.001

Allergy characteristics

Atopic sensitization 120/136 (88.2%) 75/83 (90.4%) 45/53 (84.9%) .490

Total IgE abnormal 98/114 (86.0%) 68/76 (89.5%) 30/38 (78.9%) .215

Food allergy 29/128 (22.7%) 16/77 (20.8%) 13/51 (25.5%) .683

Aeroallergens 120/138 (87.0%) 75/85 (88.2%) 45/53 (84.9%) .760

Atopic dermatitis 53/131 (40.5%) 36/84 (42.9%) 17/47 (36.2%) .574

Allergic rhinitis 101/135 (74.8%) 62/83 (74.7%) 39/52 (75.0%) 1.000

Eosinophil percent n = 125
5.5 (3.4, 8.5)

n = 79
6.0 (3.8, 9.4)

n = 46
5.0 (2.8, 6.7)

.040

Current asthma medication

ICS 143 (100.0%) 89 (100.0%) 54 (100.0%) 1.000

SABA 133 (93.0%) 84 (94.4%) 49 (90.7%) .624

LABA 135 (94.4%) 83 (93.3%) 52 (96.3%) .696
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communities. A total of 5088 ASVs were identified including 2507 
ASVs and 2684 ASVs in the feces and saliva samples, respectively. 
Bacteroides, Prevotella, and Alistipes were the highest abundant 
bacterial genera in the feces samples, and Prevotella, Neisseria, and 
Haemophilus were the highest abundant genera in the saliva samples 
(Figure  1). For the alpha diversity, there were no statistically sig-
nificant differences between the controlled and uncontrolled asth-
matics, based on the number of observed unique ASV per sample 
(feces: p = .17, saliva: p = .061) or the Shannon index (feces: p = .51, 
saliva: p = .12) (Figure S1). The beta diversity did also not find any 

significant differences between the uncontrolled and controlled 
asthmatics (feces: p = .586, saliva: p = .705, Figure 2).

3.2  |  Conventional differential abundance analysis 
shows no differentially abundant taxa

For the conventional differential abundance analysis, after con-
sidering ASVs only present in at least 5% of samples, 463 and 
450 ASVs remained in the feces and saliva samples, respectively. 

Total (N = 143)
Uncontrolled asthmatics 
(N = 89)

Controlled asthmatics 
(N = 54) p-Value

OCS 3 (2.1%) 3 (3.4%) 0 (0.0%) .446

LTRA 25 (17.5%) 18 (20.2%) 7 (13.0%) .378

Omalizumab 14 (9.8%) 13 (14.6%) 1 (1.9%) .028

Mepolizumab 2 (1.4%) 2 (2.2%) 0 (0.0%) .708

Antibiotics use

Prenatal 6/126 (4.8%) 2/76 (2.6%) 4/50 (8.0%) .174

From 0 to 2 years old 53/138 (38.4%) 32/84 (38.1%) 21 (38.9%) .186

Last 2 months 19/137 (13.9%) 14/83 (16.9%) 5 (9.3%) .314

(Secondhand) smoking

Prenatal 34/114 (29.8%) 19/67 (28.4%) 15/47 (31.9%) .841

From 0 to 2 years old 30/109 (27.5%) 15/64 (23.4%) 15/45 (33.3%) .234

Present 33/121 (27.3%) 18/72 (25.0%) 15/49 (30.6%) .637

Spirometry % predicted, median (IQR)

FEV1 pre-salbutamol n = 140
94.1 (82.8, 103.3)

n = 87
95.4 (82.3, 103.3)

n = 53
92.6 (86.1, 103.3)

.887

FEV1 post-salbutamol n = 138
99.7 (89.7, 109.1)

n = 86
100.4 (92.1, 108.1)

n = 52
97.6 (89.4, 109.4)

.350

FEV1/FVC pre-salbutamol n = 140
95.6 (87.2, 100.3)

n = 87
94.0 (85.9, 99.1)

n = 53
97.2 (89.2, 102.8)

.051

FEV1/FVC post-salbutamol n = 138
99.3 (93.1, 103.6)

n = 86
98.9 (90.8, 103.9)

n = 52
99.9 (94.6, 103.5)

.587

Note: p-Values were calculated with a Wilcoxon rank-sum test for numerical variables and a χ2 test for categorical variables.

TA B L E  1 (Continued)

F I G U R E  1 Mean relative abundance of the most abundant genera in the feces (A) and saliva (B) samples. Genera with a mean relative 
abundance of at least 1.5% in their compartment are shown individually. All other genera are grouped under “Other.”
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After correction for batch, age, sex, center of inclusion, living 
environment, and antibiotic use, the ANCOM-BC function re-
vealed no statistically significant differentially abundant species 
between controlled and uncontrolled asthmatics (Figure 3). The 
volcano plots show that after correction for multiple testing, no 
taxa were close to reaching a significant adjusted p-value (red 
line, Figure 3).

3.3  |  Taxa selected by REFS show enrichment in 
inflammation-related taxa

The same 5% criterion as for conventional differential abundance 
analysis was applied for REFS, with 2 datasets for both saliva and 
fecal samples. One including patients who used antibiotics in the 
last 2 months, and one with patients who used no antibiotics (NA) 

in the last 2 months. For the feces samples, this resulted in 463 
(NA: 451) ASVs being detected in 103 (NA: 87) patients. For the 
saliva samples, 450 (NA: 436) ASVs were detected in 143 (NA: 124) 
patients.

Through iterative removal of the least predictive taxa, the REFS 
machine learning algorithm selected a number of ASVs (features) for 
each of the datasets based on the highest accuracy over 10 separate 
runs (Figure S2). The highest discrimination accuracy by the REFS 
algorithm was 85.8% (NA: 86.6) for the feces samples and 80.9% 
(NA: 84.1%) for the saliva samples. Areas under the curve (AUC) 
for the individual feature reduction methods are shown in Table S1. 
These are considered as “very good”.22 The highest accuracies were 
achieved by using 30 (NA: 29) and 37 (NA: 56) taxa for the feces 
and saliva samples, respectively. These identified taxa include gen-
era such as Haemophilus, Veillonella, and Rothia. However, there is 
only moderate overlap between the taxa found in the samples with 

F I G U R E  2 Beta diversity measure comparing the controlled and uncontrolled asthmatics for the feces (A) and saliva (B) samples using PCoA 
on the Bray–Curtis differences. For both sampling compartments, no statistically significant differences were found between the two groups.

F I G U R E  3 Volcano plots of the conventional differential abundance analysis using the ANCOM-BC function. The gray dots represent 
nonsignificant taxa, while the red line represents an adjusted p-value of .05, the significance threshold. No significantly different taxa were 
found in either the feces or saliva samples.
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    |  7 of 10BLANKESTIJN et al.

F I G U R E  4 Boxplots showing the abundances of the features selected by the REFS machine learning algorithm for the feces (A) and 
saliva (B) samples. Counts were normalized using cumulative sum scaling for visual purposes only, with the actual model using a Z-score 
transformation. The black horizontal line depicts the median, the triangle indicates the average, and the colored points show outliers. The 
taxa are ordered according to their predictive value.
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and without the patients that used antibiotics, 50% and 57% for the 
feces and saliva samples respectively. The normalized abundance of 
these selected taxa can be found in Figure  4 (including antibiotic 
users) and Figure S3 (nonantibiotic users).

Enrichment analysis was performed with the MicrobiomeAnalyst 
tool23 with the genus and species names of the identified taxa. 
Tables S2 and S3 show all significant taxon sets from the feces and 
saliva samples respectively. Interestingly, several taxon sets related 
to (liver) cirrhosis are prevalent in both the feces and saliva sam-
ples. Other significantly enriched taxon sets linked to inflammation 
include mucositis, periodontitis, ulcerative colitis, and chronic ob-
structive pulmonary disease (COPD).

4  |  DISCUSSION

In this study, we aimed to show differences in the gastrointestinal 
bacterial microbiome of controlled and uncontrolled asthmatics in 
the pediatric SysPharmPediA cohort.6 We showed that diversity 
measures and conventional differential abundance analyses were un-
able to discriminate between controlled and uncontrolled asthmatics, 
while the machine learning technique REFS was able to find sets of 
taxa with predictive power for asthma control status. The taxa iden-
tified showed enrichment in taxa involved in cirrhosis for both the 
feces and saliva samples and taxa involved in inflammatory diseases.

Among the predictive taxa in the saliva samples were the 
Haemophilus and Streptococcus genera. Earlier research has shown 
that the colonization of these genera in asthma is associated with 
longer disease duration, poorer lung function, and higher neutrophil 
counts.12 However, in our dataset, the abundance of these genera is 
similar or slightly increased in the controlled asthmatics. Species of 
the Veillonella genus showed both increased and decreased abun-
dances among the predictive taxa. This potentially reflects the con-
flicting conclusions about this genus in literature. Earlier research 
has shown that Veillonella is more abundant in a less severe asthma 
phenotype.14 On the contrary, higher Veillonella abundance in chil-
dren in the airway has been associated with an increased duration of 
asthma episodes.24 The Rothia genus was also identified in the saliva 
samples, with an increased abundance in the controlled asthmatics. 
Rothia was previously found to have an anti-inflammatory effect by 
inhibiting the activation of the NF-κB pathway,25 a major player in 
inflammation and asthma pathophysiology.26

Hu et al. identified 3 genera associated with allergic rhinitis in the 
fecal microbiome of children at 10 years old. Of these genera, one 
(Agathobacter) was associated with higher odds of having allergic 
rhinitis, and two (UCG-005 and Christensenellaceae R-7 group) were 
associated with a decrease in the odds of having allergic rhinitis.27 All 
these genera were identified to have predictive value in our study, 
with two species of UCG-005 being the best and fifth-best predic-
tors of asthma control in the feces samples.

The processing of the input by machine learning methods is 
often seen as a black box. It is difficult for humans to understand 
how certain methods make their classification and decisions, with 

fields attempting to uncover this black box growing bigger in recent 
years.28,29 Interestingly, in our study, the machine learning ensemble 
selected several features that did not show any distinction on their 
own between controlled and uncontrolled asthmatics. This can be 
seen in two ASVs attributed to Veillonella atypica in the saliva sam-
ples. It is possible that the predictive power of these taxa lies in the 
interaction with other taxa, only detected by machine learning. For 
most of the appointed taxa, the differences between uncontrolled 
and controlled asthmatics are too small for conventional methods to 
detect. The strength of the machine learning methods and REFS lies 
in the detection of patterns and interactions that arise from chang-
ing asthma status.

The strength of this study lies in the multi-analytical approach. 
We approached the microbiome using diversity measures, con-
ventional differential abundance analysis, and advanced machine 
learning, performing analysis on the microbiome obtained from mul-
tiple sources. We showed the differences in results between each 
approach. While the first two approaches were not able to detect 
differences, REFS identified taxa that were previously discovered 
to have been implicated in asthma severity or asthma mechanisms. 
Another strength of this study is the multinational European scope 
of the SysPharmPediA cohort. Including patients from four countries 
allows the results to be more generalizable over Europe compared 
to patient inclusions from only one country. This is of particular rele-
vance, as the microbiome is influenced by environmental exposures 
and cultural differences such as dietary intake and lifestyle.

This study is, however, not without its limitations. Firstly, while 
the microbiome remains sufficiently stable overtime without 
changes in disease status,7 evidence shows that changes in microbi-
ome are already detectable before the onset of asthma symptoms. 
As a result, the microbiome of some children in the controlled group 
could have similar microbial composition to uncontrolled asthmat-
ics, if they might develop exacerbation. Secondly, for machine 
learning techniques the number of samples is considered relatively 
low.30 This puts the results at risk of overfitting. We attempted to 
prevent overfitting as much as possible by applying an ensemble 
of classifier methods, 10-fold cross-validation, and using different 
classifier methods for training and testing. This might not, however, 
have led to full removal of overfitting, as the overlap between taxa 
before and after removal of the patients with antibiotics was only 
around 55%. Therefore, validating the results in external cohorts is 
needed to reach definitive conclusions.

In conclusion, we have shown that the gastrointestinal micro-
biome can be used to discriminate between controlled and un-
controlled asthmatics using machine learning. This suggests that 
machine learning techniques can provide complementary insights 
into the link between the community of gastrointestinal bacteria 
and asthma control, where conventional techniques fail. This study 
suggests that the gastrointestinal microbiome can be a potential bio-
marker for treatment responsiveness and thereby help to improve 
asthma control in children. However, refining of the taxa sets and 
careful validation are needed before this can be applied in clinical 
diagnostics and treatment.
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