7 research outputs found

    Caracterisation de la sequence v-ets specifique du virus de l'erythroblastose aviaire E26 : structure et produits de son homologue cellulaire c-ets chez le poulet

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Distinct Transcriptional Pathways Regulate Basal and Activated Major Histocompatibility Complex Class I Expression

    No full text
    Transcription of major histocompatibility complex (MHC) class I genes is regulated by both tissue-specific (basal) and hormone/cytokine (activated) mechanisms. Although promoter-proximal regulatory elements have been characterized extensively, the role of the core promoter in mediating regulation has been largely undefined. We report here that the class I core promoter consists of distinct elements that are differentially utilized in basal and activated transcription pathways. These pathways recruit distinct transcription factor complexes to the core promoter elements and target distinct transcription initiation sites. Class I transcription initiates at four major sites within the core promoter and is clustered in two distinct regions: “upstream” (−14 and −18) and “downstream” (+12 and +1). Basal transcription initiates predominantly from the upstream start site region and is completely dependent upon the general transcription factor TAF1 (TAF(II)250). Activated transcription initiates predominantly from the downstream region and is TAF1 (TAF(II)250) independent. USF1 augments transcription initiating through the upstream start sites and is dependent on TAF1 (TAF(II)250), a finding consistent with its role in regulating basal class I transcription. In contrast, transcription activated by the interferon mediator CIITA is independent of TAF1 (TAF(II)250) and focuses initiation on the downstream start sites. Thus, basal and activated transcriptions of an MHC class I gene target distinct core promoter domains, nucleate distinct transcription initiation complexes and initiate at distinct sites within the promoter. We propose that transcription initiation at the core promoter is a dynamic process in which the mechanisms of core promoter function differ depending on the cellular environment

    Histone Modifications, but Not Nucleosomal Positioning, Correlate with Major Histocompatibility Complex Class I Promoter Activity in Different Tissues In Vivo▿ †

    No full text
    To examine the role of chromatin in transcriptional regulation of the major histocompatibility complex (MHC) class I gene, we determined nucleosome occupancy and positioning, histone modifications, and H2A.Z occupancy across its regulatory region in murine tissues that have widely different expression levels. Surprisingly, nucleosome occupancy and positioning were indistinguishable between the spleen, kidney, and brain. In all three tissues, the 200 bp upstream of the transcription start site had low nucleosome occupancy. In contrast, nuclease hypersensitivity, histone modifications, and H2A.Z occupancy showed tissue-specific differences. Thus, tissue-specific differences in MHC class I transcription correlate with histone modifications and not nucleosomal organization. Further, activation of class I transcription by gamma interferon or its inhibition by α-amanitin did not alter nucleosome occupancy, positioning, nuclease hypersensitivity, histone modifications, or H2A.Z occupancy in any of the tissues examined. Thus, chromatin remodeling was not required to dynamically modulate transcriptional levels. These findings suggest that the MHC class I promoter remains poised and accessible to rapidly respond to infection and environmental cues

    Immature CD8 Single-Positive Thymocytes Are a Molecularly Distinct Subpopulation, Selectively Dependent on BRD4 for Their Differentiation

    No full text
    Summary: T cell differentiation in the thymus proceeds in an ordered sequence of developmental events characterized by variable expression of CD4 and CD8 coreceptors. Here, we report that immature single-positive (ISP) thymocytes are molecularly distinct from all other T cell populations in the thymus in their expression of a gene profile that is dependent on the transcription factor BRD4. Conditional deletion of BRD4 at various stages of thymic differentiation reveals that BRD4 selectively regulates the further differentiation of ISPs by targeting cell cycle and metabolic pathways, but it does not affect the extensive proliferation that results in the generation of ISPs. These studies lead to the conclusion that the ISP subpopulation is not a hybrid transitional state but a molecularly distinct subpopulation that is selectively dependent on BRD4. : Thymocytes differentiate from immature DN to ISP, DP, and single-positive thymocytes. Gegonne et al. report the finding that BRD4 is required at the transition from immature ISP to DP thymocytes but not for the differentiation of DN thymocytes or the maturation of conventional single-positive thymocytes from the DP stage. Keywords: differentiation, immature single-positive thymocytes, ISP, BRD4, gene expression, cell cycle, metabolic pathways, c-My
    corecore