38 research outputs found

    The effects of alcohol consumption, psychological distress and smoking status on emergency department presentations in New South Wales, Australia

    Get PDF
    BACKGROUND: Despite clear links between risky alcohol consumption, mental health problems and smoking with increased morbidity and mortality, there is inconclusive evidence about how these risk factors combine and if they are associated with increased attendance at emergency departments. This paper examines the population-level associations and interactions between alcohol consumption, psychological distress and smoking status with having presented to an emergency department in the last 12 months. METHODS: This study uses data from a representative sample of 34,974 participants aged 16 years and over from the New South Wales Population Health Survey, administered between 2002 and 2004. Statistical analysis included univariate statistics, cross-tabulations, and the estimation of prevalence rate ratios using Cox's proportional hazard regression model. RESULTS: Results show that high-risk alcohol consumption, high psychological distress and current smoking were all significantly and independently associated with a greater likelihood of presenting to an emergency department in the last year. Presenting to an emergency department was found to be three times more likely for women aged 30 to 59 years with all three risk factors and ten times more likely for women aged 60 years or more who reported high risk alcohol consumption and high psychological distress than women of these age groups without these risk factors. For persons aged 16 to 29 years, having high-risk alcohol consumption and being a current smoker doubles the risk of presenting to an emergency department. CONCLUSION: The combination of being a high-risk consumer of alcohol, having high psychological distress, and being a current smoker are associated with increased presentations to emergency departments, independent of age and sex. Further research is needed to enhance recognition of and intervention for these symptoms in an emergency department setting in order to improve patient health and reduce future re-presentations to emergency departments

    Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene

    Get PDF
    Changes in climate variability are as important for society to address as are changes in mean climate1. Contrasting temperature variability during the Last Glacial Maximum and the Holocene can provide insights into the relationship between the mean state of the climate and its variability2,3. However, although glacial–interglacial changes in variability have been quantified for Greenland2, a global view remains elusive. Here we use a network of marine and terrestrial temperature proxies to show that temperature variability decreased globally by a factor of four as the climate warmed by 3–8 degrees Celsius from the Last Glacial Maximum (around 21,000 years ago) to the Holocene epoch (the past 11,500 years). This decrease had a clear zonal pattern, with little change in the tropics (by a factor of only 1.6–2.8) and greater change in the mid-latitudes of both hemispheres (by a factor of 3.3–14). By contrast, Greenland ice-core records show a reduction in temperature variability by a factor of 73, suggesting influences beyond local temperature or a decoupling of atmospheric and global surface temperature variability for Greenland. The overall pattern of reduced variability can be explained by changes in the meridional temperature gradient, a mechanism that points to further decreases in temperature variability in a warmer future

    A probabilistic calibration of climate sensitivity and terrestrial carbon change in GENIE-1

    Get PDF
    In order to investigate Last Glacial Maximum and future climate, we “precalibrate” the intermediate complexity model GENIE-1 by applying a rejection sampling approach to deterministic emulations of the model. We develop ~1,000 parameter sets which reproduce the main features of modern climate, but not precise observations. This allows a wide range of large-scale feedback response strengths which generally encompass the range of GCM behaviour. We build a deterministic emulator of climate sensitivity and quantify the contributions of atmospheric (±0.93°C, 1?) vegetation (±0.32°C), ocean (±0.24°C) and sea–ice (±0.14°C) parameterisations to the total uncertainty. We then perform an LGM-constrained Bayesian calibration, incorporating data-driven priors and formally accounting for structural error. We estimate climate sensitivity as likely (66% confidence) to lie in the range 2.6–4.4°C, with a peak probability at 3.6°C. We estimate LGM cooling likely to lie in the range 5.3–7.5°C, with a peak probability at 6.2°C. In addition to estimates of global temperature change, we apply our ensembles to derive LGM and 2xCO2 probability distributions for land carbon storage, Atlantic overturning and sea–ice coverage. Notably, under 2xCO2 we calculate a probability of 37% that equilibrium terrestrial carbon storage is reduced from modern values, so the land sink has become a net source of atmospheric CO2

    Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model

    Get PDF
    A simplified climate model is presented which includes a fully 3-D, frictional geostrophic (FG) ocean component but retains an integration efficiency considerably greater than extant climate models with 3-D, primitive-equation ocean representations (20k years of integration can be completed in about a day on a PC). The model also includes an Energy and Moisture Balance atmosphere and a dynamic and thermodynamic sea-ice model. Using a semi-random ensemble of 1,000 simulations, we address both the inverse problem of parameter estimation, and the direct problem of quantifying the uncertainty due to mixing and transport parameters. Our results represent a first attempt at tuning a 3-D climate model by a strictly defined procedure, which nevertheless considers the whole of the appropriate parameter space. Model estimates of meridional overturning and Atlantic heat transport are well reproduced, while errors are reduced only moderately by a doubling of resolution. Model parameters are only weakly constrained by data, while strong correlations between mean error and parameter values are mostly found to be an artefact of single-parameter studies, not indicative of global model behaviour. Single-parameter sensitivity studies can therefore be misleading. Given a single, illustrative scenario of CO2 increase and fixing the polynomial coefficients governing the extremely simple radiation parameterisation, the spread of model predictions for global mean warming due solely to the transport parameters is around one degree after 100 years forcing, although in a typical 4,000-year ensemble-member simulation, the peak rate of warming in the deep Pacific occurs 400 years after the onset of the forcing. The corresponding uncertainty in Atlantic overturning after 100 years is around 5 Sv, with a small, but non-negligible, probability of a collapse in the long term

    Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    Get PDF
    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30–300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m−2 yr−1 ) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions
    corecore