105 research outputs found

    Macrophytobenthic colonization of artificial reefs in the Ligurian Sea (Loano-Savona)

    Get PDF
    Lo studio della composizione del popolamento macrofitobentonico su strutture artificiali sommerse ha una storia decennale nella zona di Loano (Savona). Il presente lavoro mira a presentare le osservazioni preliminari di una nuova campagna in corso di svolgimento nella medesima zona. La flora e la struttura della comunità macrofitobentonica viene analizzata sulle strutture artificiali (piramidi) posizionate nella zona di Loano ad una profondità di 18 m. Il confronto con i dati storici presenti in letteratura fornirà un quadro dell'evoluzione del popolamento su tali substrati

    Heparin Strongly Enhances the Formation of β2-Microglobulin Amyloid Fibrils in the Presence of Type I Collagen

    Get PDF
    The tissue specificity of fibrillar deposition in dialysis-related amyloidosis is most likely associated with the peculiar interaction of beta2-microglobulin (beta2-m) with collagen fibers. However, other co-factors such as glycosaminoglycans might facilitate amyloid formation. In this study we have investigated the role of heparin in the process of collagen-driven amyloidogenesis. In fact, heparin is a well known positive effector of fibrillogenesis, and the elucidation of its potential effect in this type of amyloidosis is particularly relevant because heparin is regularly given to patients subject to hemodialysis to prevent blood clotting. We have monitored by atomic force microscopy the formation of beta2-m amyloid fibrils in the presence of collagen fibers, and we have discovered that heparin strongly accelerates amyloid deposition. The mechanism of this effect is still largely unexplained. Using dynamic light scattering, we have found that heparin promotes beta2-m aggregation in solution at pH 6.4. Morphology and structure of fibrils obtained in the presence of collagen and heparin are highly similar to those of natural fibrils. The fibril surface topology, investigated by limited proteolysis, suggests that the general assembly of amyloid fibrils grown under these conditions and in vitro at low pH is similar. The exposure of these fibrils to trypsin generates a cleavage at the C-terminal of lysine 6 and creates the 7-99 truncated form of beta2-m (DeltaN6beta2-m) that is a ubiquitous constituent of the natural beta2-m fibrils. The formation of this beta2-m species, which has a strong propensity to aggregate, might play an important role in the acceleration of local amyloid deposition

    Different ataxin-3 amyloid aggregates induce intracellular Ca2+ deregulation by different mechanisms in cerebellar granule cells

    Get PDF
    AbstractThis work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca2+ levels and the abnormal Ca2+ signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca2+ responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca2+ response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells

    The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action

    Get PDF
    Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosi

    Plasminogen activation triggers transthyretin amyloidogenesis in vitro

    Get PDF
    Systemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form amyloid, but neither the misfolding leading to fibrillogenesis nor the anatomical localization of TTR amyloid deposition are understood. We have previously shown that, under physiological conditions, trypsin cleaves human TTR in a mechano-enzymatic mechanism that generates abundant amyloid fibrils in vitro. In sharp contrast, the widely used in vitro model of denaturation and aggregation of TTR by prolonged exposure to pH 4.0 yields almost no clearly defined amyloid fibrils. However, the exclusive duodenal location of trypsin means that this enzyme cannot contribute to systemic extracellular TTR amyloid deposition in vivo. Here, we therefore conducted a bioinformatics search for systemically active tryptic proteases with appropriate tissue distribution, which unexpectedly identified plasmin as the leading candidate. We confirmed that plasmin, just as trypsin, selectively cleaves human TTR between residues 48 and 49 under physiological conditions in vitro. Truncated and full-length protomers are then released from the native homotetramer and rapidly aggregate into abundant fibrils indistinguishable from ex vivo TTR amyloid. Our findings suggest that physiological fibrinolysis is likely to play a critical role in TTR amyloid formation in vivo. Identification of this surprising intersection between two hitherto unrelated pathways opens new avenues for elucidating the mechanisms of TTR amyloidosis, for seeking susceptibility risk factors, and for therapeutic innovation

    Large Proteins Have a Great Tendency to Aggregate but a Low Propensity to Form Amyloid Fibrils

    Get PDF
    The assembly of soluble proteins into ordered fibrillar aggregates with cross-β structure is an essential event of many human diseases. The polypeptides undergoing aggregation are generally small in size. To explore if the small size is a primary determinant for the formation of amyloids under pathological conditions we have created two databases of proteins, forming amyloid-related and non-amyloid deposits in human diseases, respectively. The size distributions of the two protein populations are well separated, with the systems forming non-amyloid deposits appearing significantly larger. We have then investigated the propensity of the 486-residue hexokinase-B from Saccharomyces cerevisiae (YHKB) to form amyloid-like fibrils in vitro. This size is intermediate between the size distributions of amyloid and non-amyloid forming proteins. Aggregation was induced under conditions known to be most effective for amyloid formation by normally globular proteins: (i) low pH with salts, (ii) pH 5.5 with trifluoroethanol. In both situations YHKB aggregated very rapidly into species with significant β-sheet structure, as detected using circular dichroism and X-ray diffraction, but a weak Thioflavin T and Congo red binding. Moreover, atomic force microscopy indicated a morphology distinct from typical amyloid fibrils. Both types of aggregates were cytotoxic to human neuroblastoma cells, as indicated by the MTT assay. This analysis indicates that large proteins have a high tendency to form toxic aggregates, but low propensity to form regular amyloid in vivo and that such a behavior is intrinsically determined by the size of the protein, as suggested by the in vitro analysis of our sample protein

    A Major Role for Side-Chain Polyglutamine Hydrogen Bonding in Irreversible Ataxin-3 Aggregation

    Get PDF
    The protein ataxin-3 consists of an N-terminal globular Josephin domain (JD) and an unstructured C-terminal region containing a stretch of consecutive glutamines that triggers the neurodegenerative disorder spinocerebellar ataxia type 3, when it is expanded beyond a critical threshold. The disease results from misfolding and aggregation, although the pathway and structure of the aggregation intermediates are not fully understood. In order to provide insight into the mechanism of the process, we monitored the aggregation of a normal (AT3Q24) ataxin-3, an expanded (AT3Q55) ataxin-3, and the JD in isolation. We observed that all of them aggregated, although the latter did so at a much slower rate. Furthermore, the expanded AT3Q55 displayed a substantially different behavior with respect to the two other variants in that at the latest stages of the process it was the only one that did the following: i) lost its reactivity towards an anti-oligomer antibody, ii) generated SDS-insoluble aggregates, iii) gave rise to bundles of elongated fibrils, and iv) displayed two additional bands at 1604 and 1656 cm−1 in FTIR spectroscopy. Although these were previously observed in other aggregated polyglutamine proteins, no one has assigned them unambiguously, yet. By H/D exchange experiments we show for the first time that they can be ascribed to glutamine side-chain hydrogen bonding, which is therefore the hallmark of irreversibly SDS-insoluble aggregated protein. FTIR spectra also showed that main-chain intermolecular hydrogen bonding preceded that of glutamine side-chains, which suggests that the former favors the latter by reorganizing backbone geometry
    • …
    corecore