63 research outputs found

    Transmission Dynamics of Low Pathogenicity Avian Influenza Infections in Turkey Flocks

    Get PDF
    Low pathogenicity avian influenza (LPAI) viruses of H5 and H7 subtypes have the potential to mutate into highly pathogenic strains (HPAI), which can threaten human health and cause huge economic losses. The current knowledge on the mechanisms of mutation from LPAI to HPAI is insufficient for predicting which H5 or H7 strains will mutate into an HPAI strain, and since the molecular changes necessary for the change in virulence seemingly occur at random, the probability of mutation depends on the number of virus replicates, which is associated with the number of birds that acquire infection. We estimated the transmission dynamics of LPAI viruses in turkeys using serosurveillance data from past epidemics in Italy. We fitted the proportions of birds infected in 36 flocks into a hierarchical model to estimate the basic reproduction number (R0) and possible variations in R0 among flocks caused by differences among farms. We also estimated the distributions of the latent and infectious periods, using experimental infection data with outbreak strains. These were then combined with the R0 to simulate LPAI outbreaks and characterise the resulting dynamics. The estimated mean within-flock R0 in the population of infected flocks was 5.5, indicating that an infectious bird would infect an average of more than five susceptible birds. The results also indicate that the presence of seropositive birds does not necessarily mean that the virus has already been cleared and the flock is no longer infective, so that seropositive flocks may still constitute a risk of infection for other flocks. In light of these results, the enforcement of appropriate restrictions, the culling of seropositive flocks, or pre-emptive slaughtering may be useful. The model and parameter estimates presented in this paper provide the first complete picture of LPAI dynamics in turkey flocks and could be used for designing a suitable surveillance program

    Outbreak of mortality associated with Acipenser Iridovirus European (AcIV-E) detection in Siberian Sturgeon (Acipenser baerii) farmed in Sweden

    Get PDF
    Infectious disease is a major challenge in aquaculture and poses a constraint for the development of farming of new species. In 2017, Siberian sturgeon (Acipenser baerii) juveniles were imported from Italy to a Swedish farm. Transport conditions were suboptimal. Thirty percent died during transport and within the first days after arrival. Ten days after arrival, mortalities started to occur again, which prompted initiation of an investigation into the mortalities. Diseased fish were transported live to the National Veterinary Institute (SVA) for necropsy and further analysis. Pathological and histopathological investigation was conducted. Virology was performed on gills and internal organs by cell culture isolation and using specific PCR protocols against nervous necrosis virus (NNV) and Acipenser iridovirus European (AcIV-E). The juveniles displayed neurological signs such as lethargy, inability to maintain an upright position, and erratic swimming. Body condition was below normal, and gills were pale. One fish had petechial hemorrhages on the abdomen and the snout. Two specimens had intestinal hyperemia. Ventricles were air-filled, and swim bladders were deflated. Viral cell cultures gave negative results, but PCR analysis of gills and internal organs detected the presence of AcIV-E. We conclude that AcIV-E was associated with disease and high mortality in the sturgeon juveniles, and stress probably aggravated the course of the infection

    Integrated Management Strategies for Viral Nervous Necrosis (VNN) Disease Control in Marine Fish Farming in the Mediterranean

    Get PDF
    Viral nervous necrosis (VNN) is the most important viral disease affecting farmed fish in the Mediterranean. VNN can affect multiple fish species in all production phases (broodstock, hatchery, nursery and ongrowing) and sizes, but it is especially severe in larvae and juvenile stages, where can it cause up to 100% mortalities. European sea bass has been and is still the most affected species, and VNN in gilthead sea bream has become an emerging problem in recent years affecting larvae and juveniles and associated to the presence of new nervous necrosis virus (NNV) reassortants. The relevance of this disease as one of the main biological hazards for Mediterranean finfish farming has been particularly addressed in two recent H2020 projects: PerformFISH and MedAID. The presence of the virus in the environment and in the farming systems poses a serious menace for the development of the Mediterranean finfish aquaculture. Several risks associated to the VNN development in farms have been identified in the different phases of the farming system. The main risks concerning VNN affecting gilthead seabream and European seabass have been identified as restocking from wild fish in broodstock facilities, the origin of eggs and juveniles, quality water supply and live food in hatcheries and nurseries, and infected juveniles and location of farms in endemic areas for on-growing sites. Due to the potential severe impact, a holistic integrated management approach is the best strategy to control VNN in marine fish farms. This approach should include continuous surveillance and early and accurate diagnosis, essential for an early intervention when an outbreak occurs, the implementation of biosecurity and disinfection procedures in the production sites and systematic vaccination with effective vaccines. Outbreak management practices, clinical aspects, diagnostic techniques, and disinfections methods are reviewed in detail in this paper. Additionally, new strategies are becoming more relevant, such as the use of genetic resistant lines and boosting the fish immune system though nutrition

    Pneumo- and neurotropism of avian origin Italian highly pathogenic avian influenza H7N1 isolates in experimentally infected mice

    Get PDF
    AbstractAn experimental infection of mice was performed in order to investigate the potential for interspecies transmission in mammals of Italian HPAI viruses of the H7N1 subtype. Three avian origin isolates were selected, two strains obtained from ostrich (one of which contained a PB2-627 Lysine residue) and one from a chicken. Following intranasal infection of mice, clinical signs and mortality were recorded in the experimental groups challenged with the two ostrich isolates, while only weight loss was observed in those receiving the chicken strain. Viruses were recovered to a varying extent from respiratory and nervous tissues of infected animals. These results suggest that HPAI viruses, other than H5N1 and H7N7, may have zoonotic implications, and support the consensus that AI infections in poultry are to be eradicated rather than contained

    Viral nervous necrosis in gilthead sea bream (Sparus aurata) caused by reassortant betanodavirus RGNNV/SJNNV : an emerging threat for Mediterranean aquaculture

    Get PDF
    Viral nervous necrosis (VNN) certainly represents the biggest challenge for the sustainability and the development of aquaculture. A large number of economically relevant fish species have proven to be susceptible to the disease. Conversely, gilthead sea bream has generally been considered resistant to VNN, although it has been possible to isolate the virus from apparently healthy sea bream and sporadically from affected larvae and postlarvae. Unexpectedly, in 2014-2016 an increasing number of hatcheries in Europe have experienced mass mortalities in sea bream larvae. Two clinical outbreaks were monitored over this time span and findings are reported in this paper. Despite showing no specific clinical signs, the affected fish displayed high mortality and histological lesions typical of VNN. Fish tested positive for betanodavirus by different laboratory techniques. The isolates were all genetically characterized as being reassortant strains RGNNV/SJNNV. A genetic characterization of all sea bream betanodaviruses which had been isolated in the past had revealed that the majority of the strains infecting sea bream are actually RGNNV/SJNNV. Taken together, this information strongly suggests that RGNNV/SJNNV betanodavirus possesses a particular tropism to sea bream, which can pose a new and unexpected threat to the Mediterranean aquaculture

    Steps of the Replication Cycle of the Viral Haemorrhagic Septicaemia Virus (VHSV) Affecting Its Virulence on Fish

    Get PDF
    The viral haemorrhagic septicaemia virus (VHSV), a single-stranded negative-sense RNA novirhabdovirus affecting a wide range of marine and freshwater fish species, is a main concern for European rainbow trout (Oncorhynchus mykiss) fish farmers. Its genome is constituted by six genes, codifying five structural and one nonstructural proteins. Many studies have been carried out to determine the participation of each gene in the VHSV virulence, most of them based on genome sequence analysis and/or reverse genetics to construct specific mutants and to evaluate their virulence phenotype. In the present study, we have used a different approach with a similar aim: hypothesizing that a failure in any step of the replication cycle can reduce the virulence in vivo, we studied in depth the in vitro replication of VHSV in different cell lines, using sets of strains from different origins, with high, low and moderate levels of virulence for fish. The results demonstrated that several steps in the viral replication cycle could affect VHSV virulence in fish, including adsorption, RNA synthesis and morphogenesis (including viral release). Notably, differences among strains in any step of the replication cycle were mostly strain-specific and reflected only in part the in vivo phenotype (high and low virulent). Our data, therefore, support the need for further studies aimed to construct completely avirulent VHSV recombinants targeting a combination of genes rather than a single one in order to study the mechanisms of genes interplay and their effect on viral phenotype in vitro and in vivoThe project has been funded under the ERANET. The content of this article reflects only the authors’ views, and the ERANET Consortium is not liable for any use that may be made of the information contained thereinS

    Genomic Sequencing of Ranaviruses Isolated from Edible Frogs (Pelophylax esculentus)

    Get PDF
    Ranaviruses were isolated from wild edible frogs (Pelophylax esculentus)during epizootics in Denmark and Italy. Phylogenomic analyses revealed that these isolates are closely related and belong to a clade of ranaviruses that includes the Andrias davidianus ranavirus (ADRV), common midwife toad ranavirus (CMTV), Testudo hermanni ranavirus (THRV), and pike-perch iridovirus (PPIV)

    Molecular Evolution and Phylogeography of Co-circulating IHNV and VHSV in Italy

    Get PDF
    Infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) are the most important viral pathogens impacting rainbow trout farming. These viruses are persistent in Italy, where they are responsible for severe disease outbreaks (epizootics) that affect the profitability of the trout industry. Despite the importance of IHNV and VHSV, little is known about their evolution at a local scale, although this is likely to be important for virus eradication and control. To address this issue we performed a detailed molecular evolutionary and epidemiological analysis of IHNV and VHSV in trout farms from northern Italy. Full-length glycoprotein gene sequences of a selection of VHSV (n=108) and IHNV (n=89) strains were obtained. This revealed that Italian VHSV strains belong to sublineages Ia1 and Ia2 of genotype Ia and are distributed into 7 genetic clusters. In contrast, all Italian IHNV isolates fell within genogroup E, for which only a single genetic cluster was identified. More striking was that IHNV has evolved more rapidly than VHSV (mean rates of 11 and 7.3 × 10-4 nucleotide substitutions per site, per year, respectively), indicating that these viruses exhibit fundamentally different evolutionary dynamics. The time to the most recent common ancestor of both IHNV and VHSV was consistent with the first reports of these pathogens in Italy. By combining sequence data with epidemiological information it was possible to identify different patterns of virus spread among trout farms, in which adjacent facilities can be infected by either genetically similar or different viruses, and farms located in different water catchments can be infected by identical strains. Overall, these findings highlight the importance of combining molecular and epidemiological information to identify the determinants of IHN and VHS spread, and to provide data that is central to future surveillance strategies and possibly control

    The mouse model is suitable for the study of viral factors governing transmission and pathogenesis of highly pathogenic avian influenza (HPAI) viruses in mammals

    Get PDF
    Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtype pose a major public health threat due to their capacity to cross the species barrier and infect mammals, for example dogs, cats and humans. In the present study we tested the capacity of selected H7 and H5 HPAI viruses to infect and to be transmitted from infected BALB/c mice to contact sentinels. Previous experiments have shown that viruses belonging to both H5 and H7 subtypes replicate in the respiratory tract and central nervous system of experimentally infected mice. In this study we show that selected H7N1 and H5N1 HPAI viruses can be transmitted from mouse-to-mouse by direct contact, and that in experimentally infected animals they exhibit a different pattern of replication and transmission. Our results can be considered as a starting point for transmission experiments involving other influenza A viruses with α 2-3 receptor affinity in order to better understand the viral factors influencing transmissibility of these viruses in selected mammalian species
    corecore