19 research outputs found

    Hydrography and food distribution during a tidal cycle above a cold-water coral mound

    Get PDF
    Cold-water corals (CWCs) are important ecosystem engineers in the deep sea that provide habitat for numerous species and can form large coral mounds. These mounds influence surrounding currents and induce distinct hydrodynamic features, such as internal waves and episodic downwelling events that accelerate transport of organic matter towards the mounds, supplying the corals with food. To date, research on organic matter distribution at coral mounds has focussed either on seasonal timescales or has provided single point snapshots. Data on food distribution at the timescale of a diurnal tidal cycle is currently limited. Here, we integrate physical, biogeochemical, and biological data throughout the water column and along a transect on the south-eastern slope of Rockall Bank, Northeast Atlantic Ocean. This transect consisted of 24-h sampling stations at four locations: Bank, Upper slope, Lower slope, and the Oreo coral mound. We investigated how the organic matter distribution in the water column along the transect is affected by tidal activity. Repeated CTD casts indicated that the water column above Oreo mound was more dynamic than above other stations in multiple ways. First, the bottom water showed high variability in physical parameters and nutrient concentrations, possibly due to the interaction of the tide with the mound topography. Second, in the surface water a diurnal tidal wave replenished nutrients in the photic zone, supporting new primary production. Third, above the coral mound an internal wave (200 m amplitude) was recorded at 400 m depth after the turning of the barotropic tide. After this wave passed, high quality organic matter was recorded in bottom waters on the mound coinciding with shallow water physical characteristics such as high oxygen concentration and high temperature. Trophic markers in the benthic community suggest feeding on a variety of food sources, including phytodetritus and zooplankton. We suggest that there are three transport mechanisms that supply food to the CWC ecosystem. First, small phytodetritus particles are transported downwards to the seafloor by advection from internal waves, supplying high quality organic matter to the CWC reef community. Second, the shoaling of deeper nutrient-rich water into the surface water layer above the coral mound could stimulate diatom growth, which form fast-sinking aggregates. Third, evidence from lipid analysis indicates that zooplankton faecal pellets also enhance supply of organic matter to the reef communities. This study is the first to report organic matter quality and composition over a tidal cycle at a coral mound and provides evidence that fresh high-quality organic matter is transported towards a coral reef during a tidal cycle

    Lopinavir/Ritonavir and Darunavir/Cobicistat in Hospitalized COVID-19 Patients: Findings From the Multicenter Italian CORIST Study

    Get PDF
    Background: Protease inhibitors have been considered as possible therapeutic agents for COVID-19 patients. Objectives: To describe the association between lopinavir/ritonavir (LPV/r) or darunavir/cobicistat (DRV/c) use and in-hospital mortality in COVID-19 patients. Study Design: Multicenter observational study of COVID-19 patients admitted in 33 Italian hospitals. Medications, preexisting conditions, clinical measures, and outcomes were extracted from medical records. Patients were retrospectively divided in three groups, according to use of LPV/r, DRV/c or none of them. Primary outcome in a time-to event analysis was death. We used Cox proportional-hazards models with inverse probability of treatment weighting by multinomial propensity scores. Results: Out of 3,451 patients, 33.3% LPV/r and 13.9% received DRV/c. Patients receiving LPV/r or DRV/c were more likely younger, men, had higher C-reactive protein levels while less likely had hypertension, cardiovascular, pulmonary or kidney disease. After adjustment for propensity scores, LPV/r use was not associated with mortality (HR = 0.94, 95% CI 0.78 to 1.13), whereas treatment with DRV/c was associated with a higher death risk (HR = 1.89, 1.53 to 2.34, E-value = 2.43). This increased risk was more marked in women, in elderly, in patients with higher severity of COVID-19 and in patients receiving other COVID-19 drugs. Conclusions: In a large cohort of Italian patients hospitalized for COVID-19 in a real-life setting, the use of LPV/r treatment did not change death rate, while DRV/c was associated with increased mortality. Within the limits of an observational study, these data do not support the use of LPV/r or DRV/c in COVID-19 patients

    Formative assessment workshops as a tool to support pre-service teacher education on argumentation

    No full text
    The paper presents an innovative formative assessment practice exploiting online resources in order to foster argumentation competences in primary pre-service teachers. Specifically, we designed formative assessment workshops making use of an online elearning platform through which students (future primary teachers) are asked to produce written argumentation texts and to provide feedback on their peers’ productions, based on the three given criteria of correctness, completeness and clarity. We submitted a questionnaire concerning the students’ feelings about their participation to the activity and on their perceived impact on their learning process. In the paper we describe the design of the educational activity and analyze the results from the students’ questionnaire

    Grasping criteria for success: engaging undergraduate students in formative feedback by means of digital peer workshops.

    No full text
    In our study we exploit digital tools in order to foster a relational approach to mathematics undergraduate students. Specifically, we designed formative assessment workshops based on peer feedback, with the aim to promote self-assessment and reflection on one’s own mathematical activity. In the paper we describe the design of an educational activity and investigate how the students perceived their experience with the designed formative assessment workshops. Furthermore, we provide evidence of the effectiveness of the designed workshops in terms of aligning students’ feedback with the teacher’s criteria

    Carbon budgets of Scotia Sea mesopelagic zooplankton and micronekton communities during austral spring

    Get PDF
    Zooplankton form an integral component of epi- and mesopelagic ecosystems, and there is a need to better understand their role in ocean biogeochemistry. The export and remineralisation of particulate organic matter at depth plays an important role in controlling atmospheric CO2 concentrations. Pelagic mesozooplankton and micronekton communities may influence the fate of organic matter in a number of ways, including: the consumption of primary producers and export of this material as fast-sinking faecal pellets, and the active flux of carbon by animals undertaking diel vertical migration (DVM) into the mesopelagic. We present day and night vertical biomass profiles of mesozooplankton and micronekton communities in the upper 500 m during three visits to an ocean observatory station (P3) to the NW of South Georgia (Scotia Sea, South Atlantic) in austral spring, alongside estimates of their daily rates of ingestion and respiration throughout the water column. Day and night community biomass estimates were dominated by copepods >330 μm, including the lipid-rich species, Calanoides acutus and Rhincalanus gigas. We found little evidence of synchronised DVM, with only Metridia spp. and Salpa thompsoni showing patterns consistent with migratory behaviour. At depths below 250 m, estimated community carbon ingestion rates exceeded those of metabolic costs, supporting the understanding that food quality in the mesopelagic is relatively poor, and organisms have to consume a large amount of food in order to fulfil their nutritional requirements. By contrast, estimated community rates of ingestion and metabolic costs at shallower depths were approximately balanced, but only when we assumed that the animals were predominantly catabolising lipids (i.e. respiratory quotient = 0.7) and had relatively high absorption efficiencies. Our work demonstrates that it is possible to balance the metabolic budgets of mesopelagic animals to within observational uncertainties, but highlights the need for a better understanding of the physiology of lipid-storing animals and how it influences carbon budgeting in the pelagic

    Hydrography and food distribution during a tidal cycle above a cold-water coral mound

    No full text
    Cold-water corals (CWCs) are important ecosystem engineers in the deep sea that provide habitat for numerous species and can form large coral mounds. These mounds influence surrounding currents and induce distinct hy- drodynamic features, such as internal waves and episodic downwelling events that accelerate transport of organic matter towards the mounds, supplying the corals with food. To date, research on organic matter distribution at coral mounds has focussed either on seasonal timescales or has provided single point snapshots. Data on food distribution at the timescale of a diurnal tidal cycle is currently limited. Here, we integrate physical, biogeochemical, and biological data throughout the water column and along a transect on the south-eastern slope of Rockall Bank, Northeast Atlantic Ocean. This transect consisted of 24-h sampling stations at four locations: Bank, Upper slope, Lower slope, and the Oreo coral mound. We investigated how the organic matter distribution in the water column along the transect is affected by tidal activity. Repeated CTD casts indicated that the water column above Oreo mound was more dynamic than above other stations in multiple ways. First, the bottom water showed high vari- ability in physical parameters and nutrient concentrations, possibly due to the interaction of the tide with the mound topography. Second, in the surface water a diurnal tidal wave replenished nutrients in the photic zone, supporting new primary production. Third, above the coral mound an internal wave (200 m amplitude) was recorded at 400 m depth after the turning of the barotropic tide. After this wave passed, high quality organic matter was recorded in bottom waters on the mound coinciding with shallow water physical characteristics such as high oxygen concentration and high temperature. Trophic markers in the benthic community suggest feeding on a va- riety of food sources, including phytodetritus and zooplankton. We suggest that there are three transport mecha- nisms that supply food to the CWC ecosystem. First, small phytodetritus particles are transported downwards to the seafloor by advection from internal waves, supplying high quality organic matter to the CWC reef community. Second, the shoaling of deeper nutrient-rich water into the surface water layer above the coral mound could stimulate diatom growth, which form fast-sinking aggregates. Third, evidence from lipid analysis indicates that zooplankton faecal pellets also enhance supply of organic matter to the reef communities. This study is the first to report organic matter quality and composition over a tidal cycle at a coral mound and provides evidence that fresh high-quality organic matter is transported towards a coral reef during a tidal cycle

    Hydrography and food distribution during a tidal cycle above a cold-water coral mound

    Get PDF
    Cold-water corals (CWCs) are important ecosystem engineers in the deep sea that provide habitat for numerous species and can form large coral mounds. These mounds influence surrounding currents and induce distinct hydrodynamic features, such as internal waves and episodic downwelling events that accelerate transport of organic matter towards the mounds, supplying the corals with food. To date, research on organic matter distribution at coral mounds has focussed either on seasonal timescales or has provided single point snapshots. Data on food distribution at the timescale of a diurnal tidal cycle is currently limited. Here, we integrate physical, biogeochemical, and biological data throughout the water column and along a transect on the south-eastern slope of Rockall Bank, Northeast Atlantic Ocean. This transect consisted of 24-hour sampling stations at four locations: Bank, Upper slope, Lower slope, and the Oreo coral mound. We investigated how the organic matter distribution in the water column along the transect is affected by tidal activity. Repeated CTD casts indicated that the water column above Oreo mound was more dynamic than above other stations in multiple ways. First, the bottom water showed high variability in physical parameters and nutrient concentrations, possibly due to the interaction of the tide with the mound topography. Second, in the surface water a diurnal tidal wave replenished nutrients in the photic zone, supporting new primary production. Third, above the coral mound an internal wave (200 m amplitude) was recorded at 400 m depth after the turning of the barotropic tide. After this wave passed, high quality organic matter was recorded in bottom waters on the mound coinciding with shallow water physical characteristics such as high oxygen concentration and high temperature. Trophic markers in the benthic community suggest feeding on a variety of food sources, including phytodetritus and zooplankton. We suggest that there are three transport mechanisms that supply food to the CWC ecosystem. First, small phytodetritus particles are transported downwards to the seafloor by advection from internal waves, supplying high quality organic matter to the CWC reef community. Second, the shoaling of deeper nutrient-rich water into the surface water layer above the coral mound could stimulate diatom growth, which form fast-sinking aggregates. Third, evidence from lipid analysis indicates that zooplankton faecal pellets also enhance supply of organic matter to the reef communities. This study is the first to report organic matter quality and composition over a tidal cycle at a coral mound and provides evidence that fresh high-quality organic matter is transported towards a coral reef during a tidal cycle

    Hydrography and food distribution during a tidal cycle above a cold-water coral mound

    No full text
    Cold-water corals (CWCs) are important ecosystem engineers in the deep sea that provide habitat for numerous species and can form large coral mounds. These mounds influence surrounding currents and induce distinct hydrodynamic features, such as internal waves and episodic downwelling events that accelerate transport of organic matter towards the mounds, supplying the corals with food. To date, research on organic matter distribution at coral mounds has focussed either on seasonal timescales or has provided single point snapshots. Data on food distribution at the timescale of a diurnal tidal cycle is currently limited. Here, we integrate physical, biogeochemical, and biological data throughout the water column and along a transect on the south-eastern slope of Rockall Bank, Northeast Atlantic Ocean. This transect consisted of 24-h sampling stations at four locations: Bank, Upper slope, Lower slope, and the Oreo coral mound. We investigated how the organic matter distribution in the water column along the transect is affected by tidal activity. Repeated CTD casts indicated that the water column above Oreo mound was more dynamic than above other stations in multiple ways. First, the bottom water showed high variability in physical parameters and nutrient concentrations, possibly due to the interaction of the tide with the mound topography. Second, in the surface water a diurnal tidal wave replenished nutrients in the photic zone, supporting new primary production. Third, above the coral mound an internal wave (200 m amplitude) was recorded at 400 m depth after the turning of the barotropic tide. After this wave passed, high quality organic matter was recorded in bottom waters on the mound coinciding with shallow water physical characteristics such as high oxygen concentration and high temperature. Trophic markers in the benthic community suggest feeding on a variety of food sources, including phytodetritus and zooplankton. We suggest that there are three transport mechanisms that supply food to the CWC ecosystem. First, small phytodetritus particles are transported downwards to the seafloor by advection from internal waves, supplying high quality organic matter to the CWC reef community. Second, the shoaling of deeper nutrient-rich water into the surface water layer above the coral mound could stimulate diatom growth, which form fast-sinking aggregates. Third, evidence from lipid analysis indicates that zooplankton faecal pellets also enhance supply of organic matter to the reef communities. This study is the first to report organic matter quality and composition over a tidal cycle at a coral mound and provides evidence that fresh high-quality organic matter is transported towards a coral reef during a tidal cycle
    corecore