40 research outputs found

    NATIVE CHARACTERIZATION AND QC PROFILING OF HUMAN AMNIOTIC MESENCHYMAL STROMAL CELL VESICULAR FRACTIONS FOR SECRETOME-BASED THERAPY

    Get PDF
    Human amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties making them attractive candidates for regenerative applications in inflammatory diseases. Most of their beneficial properties are mediated through their secretome. The bioactive factors concurring to its therapeutic activity are still unknown. Evidence suggests synergy between the two main components of the secretome, soluble factors and vesicular fractions, pivotal in shifting inflammation and promoting self-healing. Biological variability and the absence of quality control (QC) protocols hinder secretome-based therapy translation to clinical applications. Moreover, vesicular secretome contains a multitude of particles with varying size, cargos and functions whose complexity hinders full characterization and comprehension. This study achieved a significant advancement in secretome characterization by utilizing native, FFF-based separation and characterizing extracellular vesicles derived from hAMSCs. This was accomplished by obtaining dimensionally homogeneous fractions then characterized based on their protein content, potentially enabling the identification of subpopulations with diverse functionalities. This method proved to be successful as an independent technique for secretome profiling, with the potential to contribute to the standardization of a qualitative method. Additionally, it served as a preparative separation tool, streamlining populations before ELISA and LC-MS characterization. This approach facilitated the categorization of distinctive and recurring proteins, along with the identification of clusters associated with vesicle activity and functions. However, the presence of proteins unique to each fraction obtained through the FFF separation tool presents a challenge for further analysis of the protein content within these cargoes

    The achievement of boar sperm in vitro capacitation is related to an increase of disrupted disulphide bonds and intracellular ROS levels

    Get PDF
    The aim of this work was to determine the relationship of intracellular reactive oxygen species (ROS) and the disulphide bonds established between sperm proteins with the achievement of capacitation in boar spermatozoa. With this purpose, spermatozoa were incubated in a specifically designed in vitro capacitation medium (CM) in the presence or absence of reduced glutathione (GSH). Incubation of boar spermatozoa in CM for 4 h significantly (p < 0.05) increased free cysteine residues, which is a marker of disrupted disulphide bonds, and also intracellular ROS levels. The addition of GSH to the medium prevented most capacitation-like changes in sperm motility, membrane lipid disorder, mitochondrial membrane potential, intracellular calcium levels and localization of tyrosine-phosphorylated proteins (pTyr), but not in tyrosine phosphorylation of P32. These effects were accompanied by the inhibition of the ability of sperm cells to trigger the acrosome exocytosis in response to progesterone. When GSH was added together with progesterone after 4 h of incubation, acrosome exocytosis was not altered, but the subsequent decrease in intracellular calcium observed in controls cells was inhibited. Furthermore, co-incubation of oocytes with spermatozoa previously incubated in CM in the presence of GSH for 4 h significantly (p < 0.05) increased the number of spermatozoa attached to the oocyte surface but decreased normal fertilization rates. Our results suggest that boar sperm capacitation is related to an increase in disrupted disulphide bonds and intracellular ROS levels and that both events are related to the regulation of hyperactivated motility, intracellular calcium dynamics, sperm binding ability to the oocyte and achievement of proper nuclear decondensation upon oocyte penetration

    The ATLAS Transition Radiation Tracker (TRT) proportional drift tube: design and performance

    Get PDF
    A straw proportional counter is the basic element of the ATLAS Transition Radiation Tracker (TRT). Its detailed properties as well as the main properties of a few TRT operating gas mixtures are described. Particular attention is paid to straw tube performance in high radiation conditions and to its operational stability

    The achievement of boar sperm in vitro capacitation is related to an increase of disrupted disulphide bonds and intracellular ROS levels

    No full text
    The aim of this work was to determine the relationship of intracellular reactive oxygen species (ROS) and the disulphide bonds established between sperm proteins with the achievement of capacitation in boar spermatozoa. With this purpose, spermatozoa were incubated in a specifically designed in vitro capacitation medium (CM) in the presence or absence of reduced glutathione (GSH). Incubation of boar spermatozoa in CM for 4 h significantly (p < 0.05) increased free cysteine residues, which is a marker of disrupted disulphide bonds, and also intracellular ROS levels. The addition of GSH to the medium prevented most capacitation-like changes in sperm motility, membrane lipid disorder, mitochondrial membrane potential, intracellular calcium levels and localization of tyrosine-phosphorylated proteins (pTyr), but not in tyrosine phosphorylation of P32. These effects were accompanied by the inhibition of the ability of sperm cells to trigger the acrosome exocytosis in response to progesterone. When GSH was added together with progesterone after 4 h of incubation, acrosome exocytosis was not altered, but the subsequent decrease in intracellular calcium observed in controls cells was inhibited. Furthermore, co-incubation of oocytes with spermatozoa previously incubated in CM in the presence of GSH for 4 h significantly (p < 0.05) increased the number of spermatozoa attached to the oocyte surface but decreased normal fertilization rates. Our results suggest that boar sperm capacitation is related to an increase in disrupted disulphide bonds and intracellular ROS levels and that both events are related to the regulation of hyperactivated motility, intracellular calcium dynamics, sperm binding ability to the oocyte and achievement of proper nuclear decondensation upon oocyte penetration

    Melatonin affects the motility and adhesiveness of in vitro capacitated boar spermatozoa via a mechanism that does not depend on intracellular ROS levels

    No full text
    This work sought to address the effects of melatonin during in vitro capacitation (IVC) and progesterone-induced acrosome exocytosis (IVAE) in boar spermatozoa. With this purpose, two different experiments were set. In the first one, IVC and IVAE were induced in the absence or presence of melatonin, which was added either at the start of IVC or upon triggering the IVAE with progesterone. Different parameters were evaluated, including intracellular levels of peroxides and superoxides, free cysteine radicals and distribution of specific lectins. While melatonin neither affected most capacitation-associated parameters nor IVAE, it dramatically decreased sperm motility, with a maximal effect at 5 lM. This effect was accompanied by a significant increase in the percentage of agglutinated spermatozoa, which was independent from noticeable changes in the distribution of lectins. Levels of free cysteine radicals were significantly lower in melatonin treatments than in the control after 4 h of incubation in capacitating medium. The second experiment evaluated the effects of melatonin on in vitro fertilising ability of boar spermatozoa. Spermatozoa previously subjected to IVC in the presence of 1 lM melatonin and used for in vitro fertilisation exhibited less ability to bind the zona pellucida (ZP) and higher percentages of monospermy. In conclusion, melatonin affects sperm motility and the stability of nucleoprotein structure and also modulates the ability of in vitro capacitated boar spermatozoa to bind the oocyte ZP. However, such effects do not seem to be related to either its antioxidant properties or changes in the sperm glycocalix

    Melatonin affects the motility and adhesiveness of in\ua0vitro capacitated boar spermatozoa via a mechanism that does not depend on intracellular ROS levels

    Get PDF
    This work sought to address the effects of melatonin during in\ua0vitro capacitation (IVC) and progesterone-induced acrosome exocytosis (IVAE) in boar spermatozoa. With this purpose, two different experiments were set. In the first one, IVC and IVAE were induced in the absence or presence of melatonin, which was added either at the start of IVC or upon triggering the IVAE with progesterone. Different parameters were evaluated, including intracellular levels of peroxides and superoxides, free cysteine radicals and distribution of specific lectins. While melatonin neither affected most capacitation-associated parameters nor IVAE, it dramatically decreased sperm motility, with a maximal effect at 5\ua0\u3bcm. This effect was accompanied by a significant increase in the percentage of agglutinated spermatozoa, which was independent from noticeable changes in the distribution of lectins. Levels of free cysteine radicals were significantly lower in melatonin treatments than in the control after 4\ua0h of incubation in capacitating medium. The second experiment evaluated the effects of melatonin on in\ua0vitro fertilising ability of boar spermatozoa. Spermatozoa previously subjected to IVC in the presence of 1\ua0\u3bcm melatonin and used for in\ua0vitro fertilisation exhibited less ability to bind the zona pellucida (ZP) and higher percentages of monospermy. In conclusion, melatonin affects sperm motility and the stability of nucleoprotein structure and also modulates the ability of in\ua0vitro capacitated boar spermatozoa to bind the oocyte ZP. However, such effects do not seem to be related to either its antioxidant properties or changes in the sperm glycocalix
    corecore