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SUMMARY
The aim of this work was to determine the relationship of intracellular reactive oxygen species (ROS) and the disulphide bonds

established between sperm proteins with the achievement of capacitation in boar spermatozoa. With this purpose, spermatozoa

were incubated in a specifically designed in vitro capacitation medium (CM) in the presence or absence of reduced glutathione

(GSH). Incubation of boar spermatozoa in CM for 4 h significantly (p < 0.05) increased free cysteine residues, which is a marker of

disrupted disulphide bonds, and also intracellular ROS levels. The addition of GSH to the medium prevented most capacitation-like

changes in sperm motility, membrane lipid disorder, mitochondrial membrane potential, intracellular calcium levels and localiza-

tion of tyrosine-phosphorylated proteins (pTyr), but not in tyrosine phosphorylation of P32. These effects were accompanied by the

inhibition of the ability of sperm cells to trigger the acrosome exocytosis in response to progesterone. When GSH was added together

with progesterone after 4 h of incubation, acrosome exocytosis was not altered, but the subsequent decrease in intracellular calcium

observed in controls cells was inhibited. Furthermore, co-incubation of oocytes with spermatozoa previously incubated in CM in the

presence of GSH for 4 h significantly (p < 0.05) increased the number of spermatozoa attached to the oocyte surface but decreased

normal fertilization rates. Our results suggest that boar sperm capacitation is related to an increase in disrupted disulphide bonds

and intracellular ROS levels and that both events are related to the regulation of hyperactivated motility, intracellular calcium

dynamics, sperm binding ability to the oocyte and achievement of proper nuclear decondensation upon oocyte penetration.

INTRODUCTION
Sperm capacitation is the series of events required for an ejac-

ulated sperm cell to fertilize an oocyte and takes place within the

female reproductive tract (Yeste et al., 2013). This characteristic

hampers the study of sperm capacitation in situ. However, with

the advent of assisted reproductive technology (ART), a large

amount of information has been gathered on how sperm cells

achieve capacitation and acquire the ability to fertilize the

oocytes. These modifications involve the activation of several

signalling pathways, which are related to an increase in intracel-

lular secondary messengers, such as cAMP and Ca²+, changes in
motility patterns and reorganization of plasma membrane.

Specifically, the fusion of the outer acrosome membrane with

the plasma membrane occurs during capacitation and allows

the spermatozoa to trigger the acrosome reaction (see Kaztska-
Ksiaz _zkiewicz, 2007; Visconti, 2009, for review).

Antioxidant agents have been used to improve storage strate-

gies for mammalian spermatozoa (Yeste, 2016). Particularly,

antioxidants have been demonstrated to increase the percentage

of intact sperm cells after freeze-thawing, which has raised the

question on how these agents exert their positive effects. On this

respect, it is worth mentioning that cryopreservation detrimen-

tally affects sperm function and survival, decreasing their

motility and increasing lipid packaging of plasma membrane

(Cormier et al., 1997; Bailey et al., 2000; Yeste, 2015; Yeste et al.,

2017). Interestingly, the presence of antioxidants in
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cryopreservation media appears to stabilize better the sperm

membrane (Yeste et al., 2013; Giaretta et al., 2015), and, particu-

larly, reduced glutathione (GSH) improves the fertilizing ability

of boar spermatozoa both in vitro and in vivo (Gadea et al.,

2004, 2005; Estrada et al., 2014, 2017a). Notably, some of the

positive effects of GSH on sperm function and survival (Yeste

et al., 2013; Estrada et al., 2014, 2017b) appear to be related to a

better maintenance of the intracellular redox balance (Jacob

et al., 2003). Indeed, GSH is known to decrease intracellular

reactive oxygen species (ROS) levels (Gadea et al., 2004, 2005)

and stabilize the integrity of disulphide bridges between sperm

proteins in cryopreserved spermatozoa (Chatterjee et al., 2001;

Yeste et al., 2013; 2014). On the other hand, moderate levels of

ROS have been suggested to be linked to sperm capacitation and

mitochondria are known to be the main sources of ROS genera-

tion in mammalian spermatozoa (reviewed by Aitken, 2017). In

spite of this, it remains to be elucidated to which extent antioxi-

dants, such as GSH, modulate sperm capacitation and how their

effects on this crucial physiological mechanism could underlie

their positive impact observed in previous studies conducted

with frozen-thawed boar spermatozoa.

Taking the aforementioned into account, the main aim of this

study was to evaluate the role of intracellular ROS levels and

maintenance of protein disulphide bridges in sperm proteins on

the achievement of in vitro capacitation and subsequent in vitro,

progesterone-induced acrosome exocytosis of boar spermato-

zoa. With this purpose, boar spermatozoa were subjected to

in vitro capacitation and acrosome reaction in the presence or

absence of GSH, a well-known protective agent against both

high ROS levels and disulphide bonds disruption (Chatterjee

et al., 2001; Gadea et al., 2004, 2005). The evaluation of the

achievement of in vitro capacitation and acrosome exocytosis

was carried out by the analysis of several capacitation markers

and other sperm quality parameters, such as percentages of

viable and motile spermatozoa, acrosome integrity, membrane

lipid disorder, DNA integrity, intracellular levels of peroxides

and superoxides, tyrosine phosphorylation P32 and localization

of tyrosine-phosphorylated proteins (pTyr). Furthermore, free

cysteine levels in both head and tail sperm extracts were evalu-

ated to determine the degree of disrupted disulphide bonds.

Finally, the sperm ability to penetrate in vitro-matured porcine

oocytes was tested after in vitro capacitation in the presence or

absence of GSH.

MATERIALS ANDMETHODS

Seminal samples

A total of 62 ejaculates collected from 35 healthy Pietrain boars

aged between two and three years were used in this study. These

animals were housed in climate-controlled buildings (Servicios

Gen�eticos Porcinos, S.L., Roda de Ter, Spain), fed with an

adjusted diet and provided with water ad libitum. Sperm-rich

fractions were collected manually using the hand-gloved

method, diluted to a final sperm concentration of 2 9 107 sper-

matozoa/mL in a commercial extender (Androstar Plus�; Mini-

tub Ib�erica SL, Tarragona, Spain) and cooled to 16 °C. Diluted

semen was then split into 90-mL commercial AI doses and the

resulting 90-mL doses were placed in a thermal packaging con-

tainer at 16 °C for approximately 45 min, which was the time

required to arrive to our laboratory.

Ethical approval

The ejaculates involved in this study were initially intended

to artificial insemination and we just bought them for our

experimental purposes. Therefore, we did not need any specific

ethical approval to perform this work, as no animal was manip-

ulated by us. In spite of this, the experimental protocol was

approved by the Ethics Committee of our institution. This

ethics committee was known as Bioethics Commission of the

Autonomous University of Barcelona (Bellaterra, Cerdanyola del

Vall�es, Spain).

Experimental design, in vitro capacitation and subsequent

acrosome exocytosis

The work consisted of two separate experiments. In the first

one, we addressed how the addition of GSH to the capacitation

medium (CM) at the beginning of the experiments affected the

sperm ability to achieve the capacitated status. The second

experiment aimed at determining the effects of GSH on the

achievement of acrosome exocytosis in previously capacitated

boar spermatozoa; with this purpose, GSH was added together

with progesterone. In each experiment, three concentrations of

GSH (C10H17N3O6S; GSH, Sigma-Aldrich�, St Louis, MO, USA)

were tested (1, 2 and 5 mM). Therefore, there were five separate

treatments: a positive control, in which cells were incubated in

CM; three different GSH concentrations, where GSH was added

at either 0 h (experiment 1) or 4 h, and a negative control, in

which spermatozoa incubated in a non-capacitating medium

(NCM). In each treatment and experiment, the following sperm

parameters were evaluated: sperm motility; sperm viability; true

acrosome exocytosis (i.e. percentages of viable, acrosome-exocy-

tosed spermatozoa); membrane lipid disorder; mitochondrial

membrane potential (MMP); intracellular levels of calcium, per-

oxides and superoxides; DNA fragmentation; free cysteine resi-

dues of sperm proteins; immunolocalization of tyrosine-

phosphorylated sperm proteins; and tyrosine phosphorylation of

P32, a specific capacitation marker of boar spermatozoa (Bravo

et al., 2005).

For the first experiment, 50 mL of an extended boar semen

sample was centrifuged at 600 g for 10 min at 16 °C and then

resuspended at a final concentration of 20–30 9 106 sperm/mL

in NCM. NCM was made up of 20-mM 4-(2-hydroxyethyl)-1-

piperazineethanesulphonic acid (HEPES) buffer (pH = 7.4),

112 mM NaCl, 3.1 mM KCl, 5 mM glucose, 21.7 mM sodium L-lac-

tate, 1 mM sodium pyruvate, 0.3 mM NaHPO4, 0.4 mM MgSO4

and 4.5 mM CaCl2 (osmolarity: 287 mOsm/kg � 6 mOsm/kg).

After resuspension, 40 mL were separated and added with 5 mg/

mL BSA and 37.6 mM NaHCO3 to obtain the CM (pH = 7.4;

osmolarity = 304 mOsm/kg � 5 mOsm/kg). The remaining

10 mL-aliquot (NCM) was the negative control. The 40-mL CM

suspension cell was further divided into four 10-mL aliquots.

One of these 10-mL aliquots was the positive control, whereas

the other three were added with GSH at final concentrations of

1, 2 and 5 mM. All aliquots were incubated at 38.5 °C and 5%

CO2 for 4 h, as described in Ramio et al. (2008). Spermatozoa

were evaluated at 0 and 4 h of incubation to evaluate the sperm

parameters described below. After 4 h of incubation, sperm cells

were added with progesterone to induce the acrosome reaction

(Jimenez et al., 2003; Wu et al., 2006). In brief, 10 lg/mL proges-

terone was added and after thorough mixing, spermatozoa were
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further incubated at 38.5 °C and 5% CO2 for an additional hour.

Sperm parameters were evaluated after 1, 5 and 60 min of the

addition of progesterone.

Although the design of the second experiment was similar to

that of experiment 1, the main difference was that GSH was

added after 4 h of incubation, together with progesterone. Again,

three different GSH concentrations were tested and samples

were evaluated before (0 and 4 h) and after (1, 5, 60 min) of add-

ing GSH together with progesterone.

Determination of extracellular GSH concentration

Extracellular GSH levels were determined by centrifuging 1-

mL aliquots at 2000 g and 4 °C for 30 s. The resultant super-

natants were immediately frozen in liquid N2 and stored at

�80 °C until analysis, which was performed within the following

15 days. Concentration of GSH was determined using a spec-

trophotometer and following the protocol described by Rahman

et al. (2006). Additionally, to determine whether there were non-

sperm-related changes in extracellular GSH levels, GSH concen-

tration was determined in CM without spermatozoa, added or

not with GSH, after incubation at 38.5 °C and 5% CO2 for 4 h.

Evaluation of sperm motility

Sperm motility was evaluated with a commercial computer-

assisted sperm analysis (CASA) system (Integrated Sperm Analy-

sis System V1.0; Proiser, Valencia, Spain), following the settings

and parameter ranges described in Ramio et al. (2008). Briefly,

samples were previously incubated at 37 °C for 5 min in a water

bath and a 5-lL drop was subsequently placed in a pre-warmed

Neubauer chamber. Three replicates of 1000 spermatozoa each

were counted prior to calculating the mean�standard error of

the mean (SEM). A sperm cell was considered to be motile when

its average path velocity (VAP) was higher than 10 lm/s.

Analysis of sperm parameters with flow cytometry

Flow cytometry was used to determine sperm viability, capaci-

tation-like membrane lipid changes, acrosome integrity and

intracellular levels of calcium, peroxides and superoxides follow-

ing the recommendations detailed in Lee et al. (2008). In all

assessments, sperm concentration was adjusted to 1 9 106 sper-

matozoa/mL in a final volume of 0.5 mL. After staining, samples

were evaluated through a Cell Laboratory QuantaSC cytometer

(Beckman Coulter, Fullerton, CA, USA), which was calibrated

periodically. Sheath flow rate was set at 4.17 lL/min in all analy-

ses, and EV and side scatter (SS) were recorded in a linear mode

(in EV vs. SS dot plots) for a minimum of 10,000 events per repli-

cate. Each parameter was evaluated in triplicate in independent

tubes. The analyser threshold was adjusted on the EV channel to

exclude subcellular debris (particle diameter < 7 lm) and cell

aggregates (particle diameter > 12 lm). Compensation was used

to minimize fluorescence spill-over into a different channel.

Information on the events was collected in List-mode Data files

and the Cell Lab QuantaSC MPL Analysis Software (version 1.0;

Beckman Coulter) was used to analyse cytometric histograms and

dot plots. In all assessments except SYBR14/PI, data were cor-

rected with the procedure described by Petrunkina et al. (2010).

Unless otherwise stated, all fluorochromes were purchased

from InvitrogenTM Molecular ProbesTM Molecular Probes�

(Thermo Fisher Scientific, Waltham, MA, USA) and diluted with

dimethyl sulphoxide (DMSO; Sigma-Aldrich).

Evaluation of sperm viability

Sperm viability was assessed using the LIVE/DEAD� Sperm

Viability Kit (SYBR-14/PI), according to the protocol described

by Garner & Johnson (1995). Following staining, three separate

sperm populations were identified: (i) viable, green-stained sper-

matozoa (SYBR-14+/PI�); (ii) non-viable, red-stained spermato-

zoa (SYBR-14�/PI+); and (iii) non-viable spermatozoa that were

stained both green and red (SYBR-14+/PI+). Non-sperm particles

(debris) were found in the SYBR-14�/PI� quadrant.

Single-stained samples were used to set EV gain, FL-1 and FL-

3 PMT-voltages and for compensation of SYBR-14 spill over into

the FL-3 channel (2.45%).

Evaluation of acrosome exocytosis

True acrosome exocytosis (percentages of viable spermatozoa

with non-intact acrosome) was determined by co-staining of

spermatozoa with ethidium homodimer (3,8-diamino-5-ethyl-6-

phenylphenanthridinium bromide; EthD-1) and peanut agglu-

tinin (from Arachis hypogaea) conjugated with fluorescein isoth-

iocyanate (FITC-PNA). This protocol was originally described by

Cooper & Yeung (1998) and was adapted to boar spermatozoa in

our laboratory. Briefly, samples were incubated with EthD-1 (fi-

nal concentration: 2.5 lg/mL) at 38 °C for 5 min in the dark.

Following this step, samples were washed by centrifugation at

2000 g for 30 s and then resuspended with PBS containing

4 mg/mL bovine serum albumin (BSA) to remove free dye.

Thereafter, samples were again centrifuged and fixed and per-

meabilized by adding 100 lL of ice-cold methanol (100%) for

30 s. Methanol was removed by centrifugation at 2000 g for 30 s

and resuspension with PBS containing 4 mg/mL BSA. Following

this, 0.8 lL PNA-FITC (final concentration: 2.5 lM) was added

and samples were incubated at room temperature in the dark for

15 min. Thereafter, samples were washed twice with PBS at

2000 g for 30 s and finally resuspended in 250 ll BTS.
Four sperm populations were identified: (i) viable spermato-

zoa with an intact acrosome membrane (PNA-FITC+/EthD-1�);
(ii) viable spermatozoa with a non-intact acrosome membrane

(PNA-FITC�/EthD-1�); (iii) non-viable spermatozoa with an

intact acrosome membrane (PNA-FITC+/EthD-1+); (iv) non-

viable spermatozoa with a non-intact acrosome membrane

(PNA-FITC�/EthD-1+).

Evaluation of capacitation-like sperm membrane lipids

changes

Capacitation-like membrane lipid changes of boar sperm

membrane was evaluated by merocyanine-540 (M540) and YO-

PRO-1 co-staining, as described by Rathi et al. (2001) and Yeste

et al. (2015). A total of four sperm populations were distin-

guished: (i) viable spermatozoa with low membrane lipid disor-

der (M540�/YO-PRO-1�); (ii) viable spermatozoa with high,

capacitation-like membrane lipid changes (M540+/YO-PRO-1�);
(iii) non-viable spermatozoa with low membrane lipid disorder

(M540�/YO-PRO-1+) and (iv) non-viable spermatozoa with high

membrane lipid changes (M540+/YO-PRO-1+).

Evaluation of mitochondrial membrane potential

Mitochondrial membrane potential (MMP) was analysed with

tetraethylbenzimidazolcarbocyanine iodide (JC-1), as described

by Gillan et al. (2005). Two sperm subpopulations were
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determined: the first subpopulation was formed by spermatozoa

with high MMP that showed orange staining (JC-1 aggregates),

whereas the second one contained the sperm cells with low

MMP, which were stained in green (JC-1 monomers).

Evaluation of intracellular levels of peroxides and superoxides

Intracellular superoxide (O2
��) and peroxide (H2O2) levels were

determined using two different oxidation-sensitive fluorescent

probes: hydroethidine (HE) for O2
�� and 20,70-dichlorodihydro-

fluorescein diacetate (H2DCFDA) for H2O2, following the proto-

col described by Guthrie & Welch (2006). Sperm membrane

integrity was simultaneously evaluated with YO-PRO-1 and PI,

respectively. Following staining, percentages of viable spermato-

zoa with high intracellular H2O2 levels (high DCF+ fluorescence)

and percentages of viable spermatozoa with high O2
�� levels

(high ethidium fluorescence; E+) were recorded.

Evaluation of intracellular calcium levels

Intracellular calcium levels were determined through two sep-

arate, specific stains: Rhod-5N-AM (Rhod5) and Fluo-3-AM (Flu-

o3), following the protocols described previously (Harrison

et al., 1993; Kadirvel et al., 2009; Yeste et al., 2015). Rhod5

mainly stains the calcium of sperm head, whereas Fluo3 mainly

stains that of the mitochondrial piece (Yeste et al., 2015).

In the case of Rhod5, where sperm membrane integrity was

simultaneously evaluated with YO-PRO-1 staining, the following

four sperm populations were identified: (i) viable spermatozoa

with low levels of intracellular calcium (Rhod5�/YO-PRO1�); (ii)
viable spermatozoa with high levels of intracellular calcium

(Rhod5+/YO-PRO-1�); (iii) non-viable spermatozoa with low

levels of intracellular calcium (Rhod5�/YO-PRO-1+); and (iv)

non-viable spermatozoa with high levels of intracellular calcium

(Rhod5+/YO-PRO-1+).

In the case of Fluo3, sperm membrane integrity was simulta-

neously evaluated with PI and the following four sperm popula-

tions were identified: (i) viable spermatozoa with low levels of

intracellular calcium (Fluo3�/PI�); (ii) viable spermatozoa with

high levels of intracellular calcium (Fluo3+/PI�); (iii) non-viable
spermatozoa with low levels of intracellular calcium (Fluo3�/
PI+); and (iv) non-viable spermatozoa with high levels of intra-

cellular calcium (Fluo3+/PI+).

Evaluation of free cysteine residues in sperm proteins

Free cysteine residues in sperm head and tail proteins were

determined following the protocol described by Flores et al.

(2011) with minor modifications. Samples were centrifuged at

600 g and 16 °C for 10 min and resuspended in ice-cold 50 mM

Tris buffer (pH = 7.4) containing 150 mM NaCl, 1% (v:v) non-

idet, 0.5% (w:v) sodium deoxycholate, 1 mM benzamidine,

10 lg/mL leupeptin, 0.5 mM phenylmethylsulphonyl fluoride

(PMSF) and 1 mM Na2VO4. Spermatozoa were subsequently

homogenized through sonication (Ikasonic U50 sonicator; Ika

Labortechnik, Staufen, Germany). Obtained homogenates were

centrifuged at 850 g and 4 °C for 20 min. Whereas the resulting

supernatants were used to measure free cysteine residues in

sperm tail proteins, the pellets were resuspended in 300 lL of

Tris buffer to measure free cysteine residues in sperm head pro-

teins. The presence of tails in supernatants and heads in pellets

were determined by previous observation under a phase-con-

trast microscope at 209 and 409 magnification. We found that

the percentages of tails in supernatants and heads in pellets were

higher than 85% (data not shown).

Levels of free cysteine residues in both tail and head fractions

were determined with 2,20-dithiodipyridine technique (2,20-
dipyridyl disulphide; Sigma-Aldrich) as described by Brockle-

hurst et al. (1979). Five replicates per sample and treatment were

evaluated, and the corresponding mean � SEM was calculated.

Evaluation of DNA fragmentation

DNA fragmentation was assessed using a commercial sperm

chromatin dispersion test (SCDt) kit specifically designed for

boar spermatozoa (Sperm-Halomax�-Sus for fluorescence

microscopy; ChromaCell S.L., Madrid, Spain). This test is based

on the different response that both intact and fragmented DNA

show after deproteinization (Enciso et al., 2005). Thus, the pro-

cedure is based on the incubation with a commercial proteinase

K solution included in the kit of spermatozoa previously embed-

ded in agarose for 10 min at room temperature. Subsequently,

samples were subjected to specific DNA staining through incu-

bation with 12 lM PI in PBS at room temperature for 15 min.

Afterwards, samples were observed under an epifluorescence

microscope (Zeiss AxioImager Z1; Karl Zeiss, Jena, Germany) at

10009 magnification. Three counts of 250 spermatozoa each

using three different slides were evaluated per sample and treat-

ment, prior to calculating the corresponding mean � SEM.

Immunoblotting

A total of seven ejaculates were selected for Western blot

assays. For this purpose, 1 mL-aliquot belonging to each experi-

mental point was centrifuged at 1000 g for 30 s and pellets were

stored at �80 °C until use. Pellets were resuspended and soni-

cated in 300 lL ice-cold lysis buffer (pH = 7.4), containing

50 mM Tris-HCl, 1 mM EDTA, 10 mM EGTA, 25 mM dithiothre-

itol, 1.5% (v:v) Triton� X-100, 1 mM PMSF, 10 lg/mL leupeptin,

1 mM orthovanadate and 1 mM benzamidine. After 30 min on

ice, the homogenized suspensions were centrifuged at 10,000 g

and 4 °C for 20 min and total protein content in supernatants

was calculated through the Bradford (1976) using a commercial

kit (Bio-Rad Laboratories; Fremont, CA, USA). Afterwards, sam-

ples were added with a loading buffer (1 : 5; v : v) containing

250 mM Tris-HCl (pH = 6.8), 50 mM dithiothreitol, 10% (w : v)

SDS, 0.5% (v : v) bromophenol blue and 50% (v : v) glycerol and

stored at �20 °C until their subsequent assay.

Samples were loaded onto 10% (w : v) acrylamide gels to per-

form SDS-PAGE (Laemmli, 1970). Pre-stained protein standards

with a molecular mass range of approximately 250 kDa to

10 kDa were added to another lane. Separated proteins were

transferred onto a low-fluorescence polyvinylidene fluoride

(PVDF) membrane (Bio-Rad) using the Trans-Blot� Turbo

Transfer System (Bio-Rad). Membranes were subsequently

immersed in blocking solution for 60 min; blocking solution

consisted of a Tris-buffered saline solution added with 5%

(w : v) BSA and 0.1% (v : v) Tween-20. Subsequently, mem-

branes were submerged in blocking solution containing the

appropriate concentration of the primary antibody. Membranes

were incubated with the antibody at 4 °C for 8 h. Primary anti-

bodies were mouse PY20 clone anti-phosphotyrosine antibody

(ref. P4110; Sigma-Aldrich) and mouse monoclonal anti-b-tubu-
lin (ref. T5201; Sigma-Aldrich). In both cases, the dilution factor

was 1 : 1000 (v : v). After three washes, membranes were
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incubated with a horseradish peroxidase (HRP)-conjugated rab-

bit anti-mouse antibody (Dako; Glostrup, Denmark) at a dilution

of 1 : 5000 (v : v) in blocking solution for 60 min. Membranes

were washed six times and were revealed using a chemilumines-

cent HRP substrate (ImmunoCruz Western Blotting Luminol

Reagent; Santa Cruz Biotechnology, Dallas, TX, USA). b-tubulin
was used as an internal standard to normalize the volume of

protein bands, after stripping and reprobing.

Analysis of membrane images was performed with ImageJ 1.49

(National Institute of Health, USA) software. The intensity of

each band was quantified and the background, defined as the

surrounding area of the band with a width of 1 mm, was utilized

to adjust the value of intensity of each band. Ratios between the

intensity values of pTyr-P32 and their corresponding b-tubulin
bands were calculated using the following formula: (P-BP)/(T-

BT), where P was the intensity value in arbitrary units obtained

from the pTyr-P32 band, BP was the intensity of the background

of the pTyr-P32 band, T was the intensity of the b-tubulin band,

and BT was the intensity of the background of the b-tubulin
band. Data were corrected to a basal arbitrary value of 100 for

the control point, which corresponded to the incubation in stan-

dard CM at 0 h.

Immunolocalization of tyrosine-phosphorylated sperm

proteins

Three treatments (NCM, CM and GSH at 2 mM) were evalu-

ated and a total of seven ejaculates were used. Immunolocaliza-

tion of tyrosine-phosphorylated proteins in boar spermatozoa

was carried out as described in Medrano et al. (2006), using a

mouse PY20 clone anti-phosphotyrosine antibody (ref. P4110;

Sigma-Aldrich) at a final dilution of 1 : 200 (v : v) in PBS, and an

Alexa Fluor� 488 donkey anti-mouse secondary antibody (final

dilution: 1 : 500, v : v). Slides were carefully washed with PBS at

4 °C three times and a drop of anti-fade mounting medium con-

taining 4,6-diamidino-2-phenylindole hydrochloride (DAPI,

125 ng/mL; Vysis Inc., Downers Grove, IL, USA) was placed onto

the specimen. Fluorescent images were obtained with a laser

confocal scanning microscope (Leica TCS 4D; Leica, Heidelberg,

Germany). Successive image slices (0.5 lm) were integrated into

three-dimensional reconstructions, which were further saved as

TIFF-format images.

In vitro fertilization

The ability of boar spermatozoa to adhere and fertilize

in vitro-matured pig oocytes was evaluated following the proto-

col described by Mat�as et al. (2003) with minor modifications.

Briefly, ovaries were obtained from a local slaughterhouse (Fri-

gor�ıfics Costa Brava; Riudellots de la Selva, Spain) and brought

to the laboratory in saline solution (0.9% (w/v) NaCl) containing

100 lg/mL kanamycin sulphate at 37 °C. Upon arrival, ovaries

were washed twice with the same saline solution. Oocyte-cumu-

lus cell complexes (COCs) were subsequently collected from fol-

licles of 3–6 mm diameter and washed two times in Dulbecco’s

PBS medium supplemented with 4 mg/mL polyvinyl alcohol

(PVA). Thereafter, COCs were washed in maturation medium

previously equilibrated at 38.5 °C and 5% CO2 in 100% humidi-

fied air for 3 h. This maturation medium consisted of NCSU-37

medium (Petters & Wells, 1993) supplemented with 0.57 mM cys-

teine, 1 mM dibutyryl cAMP, 5 lg/mL insulin, 50 lM b-mercap-

toethanol, 10 IU/mL equine chorionic gonadotrophin (eCG,

Folligon, Intervet International BV; Boxmeer, The Netherlands),

10 IU/mL human chorionic gonadotrophin (Veterin Corion,

Divasa Farmavic, Barcelona, Spain) and 10% (v/v) pig follicular

fluid. Only oocytes harvested within 2 h of slaughtering with a

complete, dense cumulus oophorus were in vitro-matured

(Mat�as et al., 1996). After washing with maturation medium,

COCs were pooled into groups of 50 oocytes with 500 lL matu-

ration medium and ten incubated at 38.5 °C and 5% CO2 for

22 h. After 22 h, COCs were transferred to fresh maturation

medium without hormones or dibutyryl cAMP, and incubated

for a further 22-h period.

After maturation, oocytes were mechanically stripped of cu-

mulus cells by carefully aspiration with a pipette. Denuded

oocytes were then washed with TALP medium (Castillo-Mart�ın

et al., 2014) and each group of 50 oocytes was transferred to a

well of a four-well Nunc multidish (Nunc, Roskilde, Denmark)

containing 250 lL TALP medium previously equilibrated at

38.5 °C and 5% CO2 for 3 h (Mat�as et al., 2010). Two hundred

fifty lL of sperm suspensions from each treatment group were

added to the fertilization wells to obtain a final concentration of

1 9 105 cells/mL. Three treatments were tested. In the first

treatment (identified as GSH), spermatozoa were previously

incubated in CM containing 2 mM GSH at 38.5 °C and 5% CO2

for 4 h and then added to the in vitro-matured oocytes. In the

second treatment (identified as GSH+PG), spermatozoa were

previously incubated in CM without GSH at 38.5 °C and 5% CO2

for 4 h and then added together with 2 mM GSH to the in vitro-

matured oocytes. This treatment was included to reach a final

GSH concentration of 2 mM in the oocyte-sperm co-incubation

medium, without a previous exposure of spermatozoa to GSH.

Finally, in the third treatment (identified as control), oocytes

were added with spermatozoa previously incubated with CM at

38.5 °C and 5% CO2 for 4 h. Capacitation medium were not sup-

plemented with GSH.

In all treatments, spermatozoa and oocytes were co-incu-

bated for 1 h. Non-attached spermatozoa were removed by

gentle aspiration with a pipette and subsequent washing with

TALP medium. Oocyte-sperm complexes were transferred to a

new well containing 500 lL TALP and cultured at 38.5 °C and

5% CO2 for 18 h. After 7 h and 18 h of culture, cells were col-

lected to perform nuclear staining. With this purpose, cells

were washed in warmed PBS and subsequently fixed in 4%

(w : v) paraformaldehyde in PBS at 38 °C for 30 min. After fix-

ation, sperm cells were washed twice with PBS and stained

with 1% (v : v) Hoechst� 33342 (Sigma-Aldrich) in PBS at

room temperature for 25 min. Following this, cells were

washed twice with PBS, mounted on glass slides and exam-

ined under a TCS 4D confocal laser scanning microscope

(Leica Lasertechnik, Heidelberg, Germany) for evidence of

sperm penetration.

In the oocyte-sperm complexes cultured for 7 h, we evaluated

the number of spermatozoa adhered to the external surface of

oocytes and the number of oocyte-sperm complexes that

showed normal fertilization. Normal fertilization was only con-

sidered when a unique sperm nucleus was observed within the

oocyte and was expressed as a rate against the total number of

oocyte-sperm complexes. In the oocyte-sperm complexes cul-

tured for 18 h, we also evaluated normal fertilization rates. In

this case, normal fertilization was considered when the nuclei

observed inside the fertilized oocyte showed evident signs of
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decondensation; again, normal fertilization rates were calculated

against the total number of oocyte-sperm complexes.

Statistical analyses

Statistical analyses were performed using a statistical package

(IBM SPSS for Windows version 23.0; IBM Corp., Armonk, NY,

USA). Data are shown as mean � SEM and the minimal level of

significance was set at p < 0.05 in all tests.

Data were first tested for normality and homoscedasticity

through Shapiro–Wilk and Levene tests. When required, data (x)

were transformed using arcsine square root (arcsin √x) before a

general mixed model (i.e. with repeated measures) was run. In

this model, the intersubject factor was the treatment (NCM, CM,

GSH concentrations) and the intrasubject factor was the incuba-

tion time (i.e. 0, 4, 4 h 1 min, 4 h 5 min, 4 h 60 min). In all cases,

each sperm functional parameter was the dependent variable,

and multiple post-hoc comparisons were worked out by using

Sidak’s test.

When no transformation remedied the normality, non-para-

metric procedures were used with raw data. Friedman’s test and

Wilcoxon matched-pairs test were used as non-parametric alter-

natives to mixed models. Percentages of normally fertilized

oocytes were determined through a chi-square test (v2).

RESULTS

Extracellular GSH concentration during in vitro capacitation

and acrosome exocytosis

As expected, GSH was absent from both freshly made CM and

NCM before its addition. Extracellular concentration of GSH

decreased after 4 h of incubating spermatozoa at 38.5 °C and 5%

CO2 with a medium containing 2 mM GSH (174.4 � 12.4 lM,
Table 1). The addition of progesterone after 4 h of incubation

did not have any immediate effect on extracellular concentration

of GSH, but a further decrease was observed after 60 min of pro-

gesterone addition (58.9 � 11.7 lM, Table 1). A decrease in the

extracellular concentration of GSH was also observed when GSH

was added together with progesterone and samples were exam-

ined after 60 min of that addition (975.8 � 62.1 lM Table 1).

Effects of GSH on sperm viability and acrosome integrity

during in vitro capacitation and acrosome reaction

Incubation of sperm cells in both CM and NCM showed a pro-

gressive drop in viability (Figure S1). The addition of GSH to CM

at 0 h had no remarkable effect on sperm viability, but this

parameter decreased at the end of the experimental period

(60 min after progesterone addition; 60.5% � 3.8% in control vs.

54.2% � 3.3% in 1 mM GSH, Fig. 1A). In contrast, sperm viability

was not affected when GSH was added together with proges-

terone (Figure S1B).

Percentages of viable spermatozoa with an exocytosed acro-

some (true acrosome exocytosis) after incubation in CM for 4 h

were low before the addition of progesterone (Fig. 1). The addi-

tion of progesterone progressively increased the percentages of

viable spermatozoa with an exocytosed acrosome, which

reached maximum values after 60 min of the addition of the

hormone (59.0% � 2.9%, Fig. 1). This phenomenon was not

observed when spermatozoa were incubated in NCM. The pres-

ence of GSH since 0 h counteracted the progesterone-induced

increase in true acrosome exocytosis in a concentration-depen-

dent manner, the percentages of viable spermatozoa with an

exocytosed acrosome being the lowest in 5 mM GSH treatment

(46.1% � 2.0%, see Fig. 1A). In contrast, the addition of GSH

together with that of progesterone after 4 h of incubation in CM

did not significantly affect the percentages of viable spermatozoa

with an exocytosed acrosome in the spermatozoa incubated in

CM (Fig. 1B).

Effects of GSH on sperm capacitation-like membrane lipid

changes during in vitro capacitation and acrosome exocytosis

Incubation of boar spermatozoa with CM significantly

(p < 0.05) increased the percentage of viable spermatozoa with

high membrane lipid disorder, which were compatible with the

achievement of the capacitation status (from 5.9% � 1.4% at 0 h

of incubation to 38.5% � 2.9% after 4 h of incubation, see

Fig. 2). The subsequent addition of progesterone decreased this

percentage, reaching values of 27.9% � 2.1% at end of the exper-

imental period (Fig. 2). The addition of GSH at 0 h counteracted

the observed increase in the percentage of viable spermatozoa

with high membrane lipid disorder (Fig. 2A). On the contrary,

percentages of viable spermatozoa with high membrane lipid

disorder did not differ from those observed in CM when GSH

was added together with progesterone (Fig. 2B).

Effects of GSH on sperm motility during in vitro capacitation

and acrosome exocytosis

Incubation in CM significantly (p < 0.05) decreased percent-

ages of total sperm motility (55.1% � 2.9% at 4 h. Fig. 3) and

increased the number of agglutinated spermatozoa (data not

shown). While total motility of spermatozoa incubated in NCM

was even lower than that of CM along the incubation period

(Fig. 3), the degree of agglutination was lower. When GSH (2 mM

and 5 mM) was added at 0 h, sperm motility was significantly

(p < 0.05) lower than in CM (5Mm GSH at 4 h: 13.4% � 1.6%,

Table 1 GSH concentrations in capacitation medium with or without GSH and with or without spermatozoa

Treatment 0 h 4 h 1 min 5 min 60 min

Without spermatozoa CM N.D. N.D. N.D. N.D. N.D.

GSH 2047.4 � 78.9a 503.3 � 29.8b 511.5 � 31.6b 501.3 � 32.9b 274.8.�23.7c

GSH+PG N.D. N.D. 2098.1 � 79.0a 2098.1 � 79.0a 1710.6 � 42.0b

With spermatozoa CM N.D. N.D. N.D. N.D. N.D.

GSH 1987.4 � 75.8a 174.4 � 12.4b 160.5 � 14.8b 164.4 � 16.1b 58.9 � 11.7c

GSH+PG N.D. N.D. 1885.9 � 78.8a 1953.6 � 77.0a 975.8 � 62.1b

CM, capacitation medium; GSH, reduced glutathione (2 mM) added at the beginning of the experiment; GSH+PG, reduced glutathione (2 mM) added together with

progesterone after 4 h of incubation in CM; N.D., not detectable. Different superscripts indicate significant differences (p < 0.05) between columns within a given

row. Results are shown as mean � SEM of seven experiments.
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see Fig. 3A). However, this GSH-induced decrease in total sperm

motility did not seem to be related with a noticeable increase in

sperm agglutination (data not shown). Similarly, when GSH was

added together with progesterone at 4 h, sperm motility also

decreased, reaching minimal values at the end of the experimen-

tal period (Fig. 3B).

Incubation in CM and NCM increased VCL, VAP, LIN and STR

(Tables 2–4). In the case of CM, but not in that of NCM, ALH

decreased. These changes in sperm kinematic parameters are

related to the achievement of capacitation status and are similar

to those published previously in the same conditions (Garc�ıa-

Herreros et al., 2005; Yeste et al., 2013, 2015). The addition of

progesterone after 4 h of incubation in CM induced a rapid

increase in VCL, VAP and ALH that was concomitant with a

decrease in LIN and STR (Tables 2–4). Incubation of spermato-

zoa in a medium containing GSH since the beginning of the

experiment had slight effects on kinematic parameters. In

0

25

50

75

0 h 4 h 1 5 60

Tr
ue

 a
cr

os
om

e 
ex

oc
yt

os
is

 (%
)

Incubation

in CM/NCM

Time after progesterone

addition (min)

Progesterone
addition

*
* *

0

25

50

75

0 h 4 h 1 5 60

Incubation
in CM/NCM

Time after progesterone
addition (min)

Progesterone

addition

Tr
ue

 a
cr

os
om

e 
ex

oc
yt

os
is

 (%
)

*
* *

* *
*

* **

** *

* *
*

(A)

(B)

Figure 1 Effects of GSH on percentages of true acrosome exocytosis of boar

spermatozoa subjected to in vitro capacitation and subsequent proges-

terone-induced acrosome exocytosis. (A) Reduced glutathione is added at

0 h. (B) Reduced glutathione added together with progesterone at 4 h.

White bars: spermatozoa incubated in NCM (C�). Light grey bars: sperma-

tozoa incubated in CM (C+). Medium grey bars: spermatozoa incubated in

CM added with 1 mM reduced glutathione. Dark green bars: spermatozoa

incubated in CM added with 2 mM reduced glutathione. Black bars: sper-

matozoa incubated in CM added with 5 mM reduced glutathione. Asterisks

indicate significant (p < 0.05) differences between a given treatment and

C+ samples. Figure shows means � SEM for seven separate experiments.
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Figure 2 Effects of GSH on percentages of viable cells with capacitation-like

lipid membrane disorder of boar spermatozoa subjected to in vitro capacita-

tion and subsequent progesterone-induced acrosome exocytosis. (A)

Reduced glutathione is added at 0 h. (B) Reduced glutathione added

together with progesterone at 4 h. White bars: spermatozoa incubated in

NCM (C�). Light grey bars: spermatozoa incubated in CM (C+). Medium

grey bars: spermatozoa incubated in CM added with 1 mM reduced glu-

tathione. Dark green bars: spermatozoa incubated in CM added with 2 mM

reduced glutathione. Black bars: spermatozoa incubated in CM added with

5 mM reduced glutathione. Asterisks indicate significant (p < 0.05) differ-

ences between a given treatment and C+ samples. Figure shows

means � SEM for seven separate experiments.
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contrast, the addition of GSH together with progesterone at 4 h

increased VCL and BCF, but counteracted the progesterone-

induced increase of LIN and STR observed in CM (2Mm GSH

and 5Mm GSH, Tables 2–4).

Effects of GSH on tyrosine phosphorylation of P32 protein

during in vitro capacitation and acrosome exocytosis

Incubation of boar spermatozoa in CM for 4 h significantly

(p < 0.05) increased the intensity of pTyr signal in P32 protein

(Figure S2). This increase was maintained after the addition of

progesterone. When GSH was added at 0 h, there were no differ-

ences in the intensity of P32 pTyr signal during the first 4 h of

incubation, but that signal decreased after 5 min (5 mM GSH)

and 60 min (2 mM GSH and 5 mM GSH) of progesterone addi-

tion (Figure S2A,B). In contrast, the addition of GSH together

with progesterone had no effects on the intensity of pTyr-P32

signal (Figure S2C,D).

Effects of GSH on the localization of tyrosine-phosphorylated

proteins during in vitro capacitation and acrosome exocytosis

At 0 h of incubation in CM, tyrosine-phosphorylated proteins

were mainly located at the equatorial and post-acrosomal

regions of sperm head (Figure S3). Incubation in CM for 4 h

increased the intensity of the post-acrosomal signal, which was

maintained after progesterone addition. Furthermore, there was

an apparent marking in the spermatozoa tail after progesterone

addition (Figure S3). Although the increase of both post-acroso-

mal and tail pTyr signal was maintained and even increased after

5 min of progesterone addition (Figure S3), a clear reduction of

its intensity was observed after 60 min of progesterone addition

(data not shown). Addition of 2 mM GSH at 0 h counteracted the

increase in the post-acrosomal signal observed in CM after 4 h

of incubation and that of the tail observed after progesterone

addition. In contrast, the addition of GSH together with proges-

terone did not differ from the incubation in CM (Figure S3 and

data not shown).

Effects of GSH on mitochondrial membrane potential during

in vitro capacitation and acrosome exocytosis

Incubation of spermatozoa in CM for 4 h increased the per-

centage of spermatozoa with high MMP, which went from

23.0% � 3.8% at 0 h to 54.6% � 4.9% at 4 h (Fig. 4). The extent

of that increase was higher (p < 0.05) than that observed in

NCM. The addition of progesterone to CM induced a further

increase in this percentage, reaching peak values after 1 min of

that addition. Thereafter, percentages of spermatozoa with high

MMP in CM decreased, reaching values of 57.7% � 5.2% after

60 min of progesterone addition (Fig. 4).

When GSH was present in the CM since 0 h, the aforemen-

tioned increases in the percentages of spermatozoa with high

MMP were counteracted (Fig. 4A). Likewise, adding GSH (2 mM

and 5 mM) together with progesterone prevented the proges-

terone-induced increase in the percentage of spermatozoa with

high MMP observed in CM at 1 min (Fig. 4B).

Effects of GSH on intracellular calcium levels during in vitro

capacitation and acrosome exocytosis

Percentages of viable boar spermatozoa with high intracellular

calcium levels stained by Rhod5 (mainly sperm head) progres-

sively increased after incubation in CM, reaching values of

38.5% � 3.9% after 4 h of incubation (Figure S4). Subsequent

addition of progesterone induced a transient increase in Rhod5-

stained calcium (65.6% � 5.1% after 1 min; Figure S4). The

addition of 5 mM GSH at 0 h significantly (p < 0.05) decreased

the transient increase of calcium observed after 1 min of proges-

terone addition (Figure S4A). This transient increase of calcium

observed after 1 min was also counteracted when 5 mM GSH

was added together with progesterone (56.0% � 4.9% vs. CM:

65.6% � 5.1%, Figure 4B).
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Figure 3 Effects of GSH on total motility of boar spermatozoa subjected to

in vitro capacitation and subsequent progesterone-induced acrosome exo-

cytosis. (A) Reduced glutathione in added at 0 h. (B) Reduced glutathione

added together with progesterone at 4 h. White bars: spermatozoa incu-

bated in NCM (C�). Light grey bars: spermatozoa incubated in CM (C+).
Medium grey bars: spermatozoa incubated in CM added with 1 mM

reduced glutathione. Dark green bars: spermatozoa incubated in CM added

with 2 mM reduced glutathione. Black bars: spermatozoa incubated in CM

added with 5 mM reduced glutathione. Asterisks indicate significant

(p < 0.05) differences between a given treatment and C+ samples. Fig-

ure shows means � SEM for seven separate experiments.
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Percentages of viable boar spermatozoa with high intracellular

calcium stained by Fluo3 (mainly located in the mid-piece) pro-

gressively increased during incubation with CM, reaching values

of 14.1% � 2.2% after 4 h of incubation (Figure S5). In a similar

fashion to that observed for Rhod5-staining, addition of proges-

terone induced a transient increase in the percentage of viable

spermatozoa with high intracellular calcium levels stained with

Fluo3, reaching values of 38.2% � 3.9% after 1 min (Figure S5).

Subsequently, this percentage decreased rapidly (19.1% � 2.6%

after 5 min) and was maintained until the end of the experiment.

The addition of GSH at 0 h significantly (p < 0.05) decreased the

percentages of viable spermatozoa with Fluo3-marked calcium

after 4 h of incubation and also reduced the transient increase

observed after progesterone addition. Interestingly, not only did

the addition of GSH together with progesterone not affect the

peak in Fluo3-calcium observed in CM, but this calcium-

increase was maintained at 5 min and 60 min (60 min: 1 mM

GSH added with progesterone: 33.9% � 4.2% vs. 19.2% � 2.3%

in CM, Figure S5B).

Effects of GSH on free cysteine residues of sperm proteins

during in vitro capacitation and acrosome exocytosis

Incubation of spermatozoa in CM progressively increased the

levels of free cysteine residues in sperm head proteins during the

Table 2 Effects of GSH on curvilinear velocity

(VCL) and average path velocity (VAP) of boar

spermatozoa subjected to in vitro capacitation

and subsequent, progesterone-induced acro-

some exocytosis

Incubation time 0 h 4 h 1 min 5 min 60 min

VCL (lm/s)

NCM 52.4 � 1.1a 61.8 � 1.7b 101.6 � 3.5c 94.0 � 2.9c 112.2 � 4.4d

CM 62.6 � 1.8a 54.7 � 1.9b 70.5 � 2.8c 67.5 � 3.1ac 70.8 � 5.3c

1 mM GSH 62.6 � 1.8a 60.1 � 5.0ab 60.2 � 4.3ab 56.3 � 2.8b* 78.0 � 6.2c

2 mM GSH 62.6 � 1.8a 37.1 � 1.5b* 58.0 � 3.6a* 60.6 � 4.2a 64.5 � 4.0a

5 mM GSH 62.6 � 1.8a 41.7 � 3.0b* 58.0 � 5.2a* 47.2 � 5.6b* 39.0 � 3.4b*

1 mM GSH+PG 62.6 � 1.8a 54.7 � 1.9b 75.1 � 4.7b* 68.0 � 4.8b 91.8 � 6.9c*

2 mM GSH+PG 62.6 � 1.8a 54.7 � 1.9b 83.8 � 5.6a 77.4 � 5.2a 84.4 � 6.0a

5 mM GSH+PG 62.6 � 1.8a 54.7 � 1.9b 78.2 � 5.2a 70.7 � 5.6b* 86.9 � 6.4b*

VAP (lm/s)

NCM 23.8 � 0.9a 47.8 � 4.9b 47.4 � 5.0b 55.3 � 5.9b 78.6 � 7.0c

CM 31.4 � 1.0a 32.1 � 1.1a 38.8 � 2.2b 39.1 � 2.3b 44.3 � 2.7b

1 mM GSH 31.4 � 1.0a 33.5 � 3.0a 45.3 � 5.0b 37.1 � 2.5ab 40.6 � 5.0ab

2 mM GSH 31.4 � 1.0a 22.2 � 1.4b* 37.5 � 4.2a 36.9 � 4.6a 42.7 � 4.1b

5 mM GSH 31.4 � 1.0a 23.3 � 1.8b* 36.9 � 6.5a 31.4 � 3.1a* 19.2 � 2.1b*

1 mM GSH+PG 31.4 � 1.0a 32.1 � 1.1a 30.1 � 1.0a 36.4 � 2.1b 46.2 � 3.2c

2 mM GSH+PG 31.4 � 1.0a 32.1 � 1.1a 37.9 � 2.0b 44.9 � 2.9b 44.5 � 3.1b

5 mM GSH+PG 31.4 � 1.0a 32.1 � 1.1a 45.4 � 2.8b* 50.7 � 3.3bc* 59.8 � 3.9c*

NCM, non-capacitation medium; CM, capacitation medium; GSH, reduced glutathione (at 1, 2 or 5 mM)

added at the beginning of the experiment; GSH+PG, reduced glutathione (at 1, 2 or 5 mM) added together

with progesterone after 4 h of incubation in CM; N.D., not detectable. Different superscripts indicate signifi-

cant differences (p < 0.05) between columns within a given row. Asterisks mean significant differences

(p < 0.05) between a given treatment and CM at the same time of incubation. Results are shown as

mean � SEM of seven experiments.

Table 3 Effects of GSH on percentages of lin-

earity (%LIN) and straightness (%STR) of boar

spermatozoa subjected to in vitro capacitation

and subsequent, progesterone-induced acro-

some exocytosis

Incubation time 0 h 4 h 1 min 5 min 60 min

LIN (%)

NCM 24.0 � 1.1a 74.1 � 6.3b 76.6 � 6.9b 75.7 � 6.5b 81.6 � 7.2b

CM 34.2 � 1.4a 50.1 � 2.9b 33.9 � 2.5a 41.8 � 2.1c 50.5 � 3.0b

1 mM GSH 34.2 � 1.4a 37.8 � 4.8a* 58.9 � 5.5b* 59.3 � 5.2b* 37.1 � 4.0a*

2 mM GSH 34.2 � 1.4a 38.6 � 2.0b* 45.6 � 4.9b* 45.8 � 4.6b 49.4 � 2.2b

5 mM GSH 34.2 � 1.4a 40.1 � 4.2b* 63.3 � 6.2c* 37.2 � 5.6b 43.5 � 1.4b*

1 mM GSH+PG 34.2 � 1.4a 50.1 � 2.9b 40.5 � 4.4b 39.1 � 4.6b 58.2 � 6.0c

2 mM GSH+PG 34.2 � 1.4a 501 � 2.9b 39.1 � 4.6b 42.0 � 4.9b 60.6 � 7.8c

5 mM GSH+PG 34.2 � 1.4a 50.1 � 2.9b 38.3 � 5.2b 40.4 � 4.9b 70.8 � 7.3c*

STR (%)

NCM 59.6 � 2.2a 83.0 � 5.4b 82.8 � 5.5b 84.4 � 5.9b 83.9 � 5.1b

CM 64.9 � 1.2a 74.2 � 3.5b 59.9 � 2.2c 63.3 � 3.9a 71.6 � 3.7b

1 mM GSH 64.9 � 1.2a 45.5 � 5.6b* 79.1 � 4.0c* 79.8 � 4.1c* 56.9 � 5.5b*

2 mM GSH 64.9 � 1.2a 61.4 � 2.3a* 64.4 � 4.8a 76.0 � 2.3b* 68.6 � 4.6a

5 mM GSH 64.9 � 1.2a 58.7 � 5.5a* 85.2 � 3.0b* 65.6 � 6.2a 75.9 � 2.5a

1 mM GSH+PG 64.9 � 1.2a 74.2 � 3.5b 58.1 � 2.7c 64.1 � 4.2c 71.1 � 4.2c

2 mM GSH+PG 64.9 � 1.2a 74.2 � 3.5b 76.5 � 4.9b* 79.1 � 5.4b* 74.1 � 4.8b

5 mM GSH+PG 64.9 � 1.2a 74.2 � 3.5b 87.0 � 6.1b* 87.6 � 6.7b* 88.3 � 7.1b*

NCM, non-capacitation medium; CM, capacitation medium; GSH, reduced glutathione (at 1, 2 or 5 mM)

added at the beginning of the experiment; GSH+PG, reduced glutathione (at 1, 2 or 5 mM) added together

with progesterone after 4 h of incubation in CM; N.D., not detectable. Different superscripts indicate signifi-

cant differences (p < 0.05) between columns within a given row. Asterisks mean significant differences

(p < 0.05) between a given treatment and CM at the same time of incubation. Results are shown as

mean � SEM of seven experiments.
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first 4 h (from 3.0 nmol/lg protein � 0.2 nmol/lg protein at 0 h

to 17.4 nmol/lg protein � 1.9 nmol/lg protein at 4 h, Fig. 5);

this was followed by a decrease after progesterone addition.

When GSH was added at the beginning of the experiment, the

increase in the free cysteine residues of sperm head proteins

observed in CM was inhibited in a dose-dependent manner

(Fig. 5A). When GSH was added together with progesterone, the

observed decrease in CM was accentuated (Fig. 5B).

Incubation of boar spermatozoa in CM also increased the

levels of free cysteine residues in sperm tail proteins and this

increase was maintained after progesterone addition (Fig. 6).

Whereas the addition of GSH at 0 h inhibited the aforemen-

tioned increase, the addition of GSH together with progesterone

did not significantly differ from CM (Fig. 6).

Effects of GSH on DNA fragmentation during in vitro

capacitation and acrosome exocytosis

In all cases, percentages of boar spermatozoa with fragmented

DNA were very low. There was only a very slight increase at the

end of the experimental period in spermatozoa incubated in

NCM (Figure S6). The addition of GSH either at 0 h or at 4 h had

no effect on this parameter.

Effects of GSH on intracellular peroxide levels during in vitro

capacitation and acrosome exocytosis

Percentages of viable spermatozoa with high intracellular per-

oxide levels significantly (p < 0.05) increased after 4 h of incuba-

tion in CM (0 h: 2.4% � 0.5% vs. 4 h: 18.6% � 2.0%, Fig. 7). This

percentage was roughly maintained after the addition of

progesterone.

When GSH was added at 0 h, the increase observed in CM was

counteracted in a dose-dependent manner throughout all the

experimental period (Fig. 7A). In contrast, adding GSH together

with progesterone had no effect on the percentage of viable

spermatozoa with high peroxide levels (Fig. 7B).

Effects of GSH on intracellular superoxide levels during in vitro

capacitation and acrosome exocytosis

Percentages of viable spermatozoa with high intracellular

superoxide levels underwent a slight, but significant (p < 0.05)

increase after 4 h of incubation in CM (0 h: 11.6% � 1.3% vs.

4 h: 17.2% � 1.9%, see Fig. 8). The subsequent addition of pro-

gesterone induced a transient decrease in this percentage, as it

recovered and reached maximal values at the end of the experi-

mental period.

The addition of GSH at 0 h counteracted the observed increase

in the percentage of spermatozoa with high superoxide levels in

all GSH concentrations (Fig. 8A). This counteracting effect of

GSH progressively diminished upon addition of progesterone,

observing no significant differences from CM at the end of the

experiment (Fig. 8A). No significant differences between CM

and GSH treatments were observed when this antioxidant was

added together with progesterone (Fig. 8B).

Effects of GSH during in vitro fertilization

As shown in Table 5, the number of spermatozoa adhered to

ZP after 7 h was 78.2 � 4.7 in CM, whereas that observed in

spermatozoa previously incubated with 2 mM GSH was

96.4 � 5.9 (p < 0.05). In contrast, when spermatozoa were not

previously incubated with 2 mM GSH but the antioxidant was

added together with the oocytes, no significant differences were

observed in the number of spermatozoa adhered to the ZP

(Table 5).

Although no significant differences in the percentages of nor-

mal fertilization were observed at 7 h, normal fertilization rates

after 18 h of sperm–oocytes co-incubation were significantly

(p < 0.05) lower when spermatozoa had previously been capaci-

tated in the presence of 2 mM GSH (Table 6). When spermatozoa

were capacitated in CM and GSH was added together with the

oocytes, normal fertilization rates were significantly lower than

those observed in the control, but significantly (p < 0.05) higher

Incubation time 0 h 4 h 1 min 5 min 60 min

ALH (lm)

NCM 3.01 � 0.09a 2.41 � 0.15b 2.24 � 0.16b 3.02 � 0.20b 4.17 � 0.35d

CM 3.07 � 0.08a 2.29 � 0.12b 2.93 � 0.13ac 2.64 � 0.16c 2.71 � 0.14ac

1 mM GSH 3.07 � 0.08a 2.14 � 0.13b 2.00 � 0.19b* 2.52 � 4.8b 2.95 � 0.22a

2 mM GSH 3.07 � 0.08a 1.96 � 0.15b 2.18 � 0.14c* 2.77 � 0.16ad 2.47 � 0.06d*

5 mM GSH 3.07 � 0.08a 1.89 � 0.10b 1.71 � 0.19b* 2.56 � 0.14c 1.81 � 0.10b*

1 mM GSH+PG 3.07 � 0.08a 2.29 � 0.12b 3.12 � 0.21ac 2.61 � 0.21abc 2.57 � 0.29abc

2 mM GSH+PG 3.07 � 0.08a 2.29 � 0.12b 2.74 � 0.19ac 3.36 � 0.31c 3.01 � 0.22c

5 mM GSH+PG 3.07 � 0.08a 2.29 � 0.12b 3.49 � 0.26c* 3.28 � 0.27c* 3.09 � 0.25c

BCF (Hz)

NCM 6.63 � 0.10a 10.88 � 0.41b 11.24 � 0.45b 11.98 � 0.63b 14.18 � 0.74c

CM 7.76 � 0.13a 8.17 � 0.23a 7.88 � 0.24a 8.00 � 0.22a 7.78 � 0.24a

1 mM GSH 7.76 � 0.13a 7.91 � 0.22a 7.28 � 0.10b* 10.17 � 0.37c* 9.25 � 0.36c*

2 mM GSH 7.76 � 0.13a 6.49 � 0.22b* 8.13 � 0.25a 8.87 � 0.24b* 7.60 � 0.24a

5 mM GSH 7.76 � 0.13a 8.05 � 0.24a 7.58 � 0.24a 8.47 � 0.32b 6.70 � 0.18c*

1 mM GSH+PG 7.76 � 0.13a 8.17 � 0.23a 8.88 � 0.37b* 10.29 � 0.49b* 10.86 � 0.55b*

2 mM GSH+PG 7.76 � 0.13a 8.17 � 0.23a 8.63 � 0.29b* 10.59 � 0.58b* 10.34 � 0.47b*

5 mM GSH+PG 7.76 � 0.13a 8.17 � 0.23a 11.42 � 0.38b* 11.68 � 0.47b* 12.29 � 0.53b*

NCM, non-capacitation medium; CM, capacitation medium; GSH, reduced glutathione (at 1, 2 or 5 mM)

added at the beginning of the experiment; GSH+PG, reduced glutathione (at 1, 2 or 5 mM) added together

with progesterone after 4 h of incubation in CM; N.D., not detectable. Different superscripts indicate signifi-

cant differences (p < 0.05) between columns within a given row. Asterisks mean significant differences

(p < 0.05) between a given treatment and CM at the same time of incubation. Results are shown as

mean � SEM of seven experiments.

Table 4 Effects of GSH on the amplitude of lat-

eral head displacement (ALH) and frequency of

head displacement (BCF) of boar spermatozoa

subjected to in vitro capacitation and subsequent,

progesterone-induced acrosome exocytosis
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than those observed in spermatozoa previously capacitated in

the presence of GSH (Table 6).

DISCUSSION
Our results indicate that in vitro capacitation of boar sperma-

tozoa is related with a disruption of disulphide bonds of both

spermatozoa head and tail proteins, as well as with a slight but

significant increase in intracellular ROS levels. Interestingly,

both observations are counteracted when GSH is present, which

occurs together with changes in other sperm capacitation mark-

ers, such as motility, membrane lipid disorder and tyrosine

phosphorylation. As a consequence, incubating boar spermato-

zoa with a capacitating medium containing GSH also alters the

acrosome exocytosis induced by progesterone. Furthermore, our
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Figure 4 Effects of GSH on mitochondrial membrane potential of boar

spermatozoa subjected to in vitro capacitation and subsequent proges-

terone-induced acrosome exocytosis. (A) Reduced glutathione is added at

0 h. (B) Reduced glutathione added together with progesterone at 4 h.

White bars: spermatozoa incubated in NCM (C�). Light grey bars: sperma-

tozoa incubated in CM (C+). Medium grey bars: spermatozoa incubated in

CM added with 1 mM reduced glutathione. Dark green bars: spermatozoa

incubated in CM added with 2 mM reduced glutathione. Black bars: sper-

matozoa incubated in CM added with 5 mM reduced glutathione. Asterisks

indicate significant (p < 0.05) differences between a given treatment and

C+ samples. Figure shows means � SEM for seven separate experiments.
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Figure 5 Effects of GSH on sperm head proteins and free cysteine residues

of boar spermatozoa subjected to in vitro capacitation and subsequent pro-

gesterone-induced acrosome exocytosis. (A) Reduced glutathione is added

at 0 h. (B) Reduced glutathione added together with progesterone at 4 h.

White bars: spermatozoa incubated in NCM (C�). Light grey bars: sperma-

tozoa incubated in CM (C+). Medium grey bars: spermatozoa incubated in

CM added with 1 mM reduced glutathione. Dark green bars: spermatozoa

incubated in CM added with 2 mM reduced glutathione. Black bars: sper-

matozoa incubated in CM added with 5 mM reduced glutathione. Asterisks

indicate significant (p < 0.05) differences between a given treatment and

C+ samples. Figure shows means � SEM for seven separate experiments.
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results also suggest that while the presence of GSH largely pre-

vents boar spermatozoa to achieve the capacitated status, its

direct effect upon the acrosome exocytosis induced by proges-

terone is less apparent.

The effects of GSH on specific parameters, such as motility,

membrane lipid disorder, mitochondrial membrane potential

and intracellular calcium levels, also support the modulating

role of GSH on sperm capacitation. In this regard, it is worth

noting that calcium plays a crucial role during both sperm

capacitation and acrosome reaction (Belmonte et al., 2016; Vice-

nte-Carrillo et al., 2017), and that we previously identified two

storage calcium sites (head and mid-piece) in boar spermatozoa

(Yeste et al., 2015). In this study, we observed that the effects of

GSH on intracellular calcium levels were more apparent in Flu-

o3-stained calcium (mainly located in the mid-piece) than in the
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Figure 6 Effects of GSH on sperm tail proteins and free cysteine residues of

boar spermatozoa subjected to in vitro capacitation and subsequent proges-

terone-induced acrosome exocytosis. (A) Reduced glutathione is added at

0 h. (B) Reduced glutathione added together with progesterone at 4 h.

White bars: spermatozoa incubated in NCM (C�). Light grey bars: sperma-

tozoa incubated in CM (C+). Medium grey bars: spermatozoa incubated in

CM added with 1 mM reduced glutathione. Dark green bars: spermatozoa

incubated in CM added with 2 mM reduced glutathione. Black bars: sper-

matozoa incubated in CM added with 5 mM reduced glutathione. Asterisks

indicate significant (p < 0.05) differences between a given treatment and

C+ samples. Figure shows means � SEM for seven separate experiments.
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Figure 7 Effects of GSH on percentages of viable cells with high peroxide

levels of boar spermatozoa subjected to in vitro capacitation and subsequent

progesterone-induced acrosome exocytosis. (A) Reduced glutathione is

added at 0 h. (B) Reduced glutathione added together with progesterone

at 4 h. White bars: spermatozoa incubated in NCM (C�). Light grey bars:

spermatozoa incubated in CM (C+). Medium grey bars: spermatozoa incu-

bated in CM added with 1 mM reduced glutathione. Dark green bars: sper-

matozoa incubated in CM added with 2 mM reduced glutathione. Black

bars: spermatozoa incubated in CM added with 5 mM reduced glutathione.

Asterisks indicate significant (p < 0.05) differences between a given treat-

ment and C+ samples. Figure shows means � SEM for seven separate

experiments.
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Rhod5-stained calcium (mainly located in the head). These

results resemble to those previously observed in boar spermato-

zoa when incubated in a capacitating medium without calcium

(Yeste et al., 2015). Therefore, one could suggest that the inter-

fering GSH-effect on sperm capacitation could be related to the

lack of sperm ability to increase mitochondrial calcium. If this

was the case, there would still be some points to address, as

while GSH has been found to decreased sperm motility in this

work, the lack of external calcium induced the opposite effect

(Yeste et al., 2015). Thus, although GSH-influence on sperm

capacitation can be partially explained through its action on the

calcium found in the mid-piece, there are other mechanisms

through which GSH exerts its effects.

Another point that merits discussion is in regards to the effects

of GSH on free cysteine residues of sperm head and tail proteins.

In this work, we analyse free cysteine residues through the uti-

lization of the 2,20-dithiodipyridine technique method. The

advantage of this method compared to others that involve thio-

glycolate and bibromobimane (Hartley et al., 2016) is that it pro-

vides a more quantitative way due to its spectrophotometric

nature, whereas the optical character of the other techniques

only allows for a less sensitive, semi-quantitative approach. Free

cysteine residues are an indicator of intact disulphide bonds

between proteins (Reyes et al., 1989; Jager et al., 1990; Perreault,

1990, 1992; Chatterjee et al., 2001; Cheng et al., 2009). Centring

on sperm head, the maintenance of a tight nucleoprotein struc-

ture in mammalian spermatozoa is, at least partially, controlled

by the number of disulphide bonds between nucleoproteins

(Reyes et al., 1989; Jager et al., 1990; Perreault, 1990, 1992; Chat-

terjee et al., 2001; Cheng et al., 2009). This relationship is espe-

cially apparent in frozen-thawed boar spermatozoa, as freeze-

thawing disrupts disulphide bonds between sperm nucleopro-

teins (Flores et al., 2011) and the presence of GSH in cryopreser-

vation media counteracts that disruption (Yeste et al., 2013).

Additionally, our results from co-incubation of spermatozoa
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Figure 8 Effects of GSH on percentages of viable cells with high superoxide

levels of boar spermatozoa subjected to in vitro capacitation and subsequent

progesterone-induced acrosome exocytosis. (A) Reduced glutathione in

added at 0 h. (B) Reduced glutathione added together with progesterone

at 4 h. White bars: spermatozoa incubated in NCM (C�). Light grey bars:

spermatozoa incubated in CM (C+). Medium grey bars: spermatozoa incu-

bated in CM added with 1 mM reduced glutathione. Dark green bars: sper-

matozoa incubated in CM added with 2 mM reduced glutathione. Black

bars: spermatozoa incubated in CM added with 5 mM reduced glutathione.

Asterisks indicate significant (p < 0.05) differences between a given treat-

ment and C+ samples. Figure shows means � SEM for seven separate

experiments.

Table 5 Number of spermatozoa adhered to ZP and normal and abnormal

fertilization rates at 7 h of post-insemination, with spermatozoa previously

subjected to in vitro capacitation in the presence (GSH) or absence of

reduced glutathione (control and GSH+PG)

Treatment Number of fertilized

oocytes evaluated

Number of

spermatozoa

adhered to ZP

Fertilization rate

Normal Abnormal

Control 60 78.2 � 4.7a 71.7a 28.3a

GSH 63 96.4 � 5.9b 66.7a 33.3a

GSH+O 59 83.4 � 4.9a 76.3a 23.7a

GSH, spermatozoa previously capacitated with reduced glutathione (2 mM);

GSH+O: spermatozoa previously incubated in capacitation medium and GSH

(2 mM) added together with oocytes. Different superscripts indicate significant

differences (p < 0.05) between treatments. Fertilization rates are calculated on

the basis of the number of fertilized oocytes evaluated at 7 h post-insemination.

Results are shown as mean � SEM of five experiments.

Table 6 Number of spermatozoa adhered to ZP and normal and abnormal

fertilization rates at 18 h of post-insemination, with spermatozoa previously

subjected to in vitro capacitation in the presence (GSH) or absence of

reduced glutathione (control and GSH+PG)

Treatment Number of fertilized

oocytes evaluated

Fertilization rate

Normal Abnormal

Control 51 58.8a 41.2a

GSH 48 8.3b 91.7b

GSH+O 55 38.2c 61.8c

GSH, spermatozoa previously capacitated with reduced glutathione (2 mM);

GSH+O: spermatozoa previously incubated in capacitation medium and GSH

(2 mM) added together with oocytes. Different superscripts indicate significant

differences (p < 0.05) between treatments. Fertilization rates are calculated on

the basis of the number of fertilized oocytes evaluated at 18 h post-insemination.

Results are shown as mean � SEM of five experiments.
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with in vitro-matured oocytes suggests that disruption of disul-

phide bonds of sperm head proteins during the achievement of

capacitation could be involved in the decondensation of sperm

nucleus that occurs upon fertilization (Perreault et al., 1984). In

fact, GSH secreted by cumulus cells is taken by the oocyte and

participates in the regulation of nuclear decondensation upon

fertilization (Perreault et al., 1984; Zuelke et al., 2003; Caglar

et al., 2005; Maedomari et al., 2007). In accordance with this, we

observed a noticeable decrease of nuclear decondensation in

oocytes co-incubated with spermatozoa previously capacitated

in the presence of GSH. Such decrease could affect the fertiliza-

tion process, as GSH would prevent the disruption of disulphide

bonds between sperm head proteins which would ultimately

reduce the sperm fertilizing ability. Of course, this hypothesis

should be taken with caution, as the presence of GSH in the co-

incubation medium, albeit at micromolar concentrations, could

also affect nuclear decondensation of oocytes and spermatozoa,

thereby mimicking the effects of GSH observed in vivo following

secretion by cumulus cells (Maedomari et al., 2007). Neverthe-

less, the intrinsic effect of GSH would not be the unique one

responsible for our observations, as normal fertilization rates

were higher when GSH was added at the time of co-incubation

(with higher levels of extracellular GSH, millimolar order) than

when spermatozoa had previously been capacitated in the pres-

ence of GSH. Therefore, the main effects of GSH would result

from its impact on sperm nuclear condensation during capacita-

tion, rather than from its direct addition at the time of

fertilization.

We also observed that incubation of spermatozoa with CM

increased the disrupted disulphide bonds of the tail. In this con-

text, it is worth remembering that disulphide bonds are instru-

mental in maintaining the structure of sperm tail proteins

(flagellum, fibrous sheath and longitudinal columns; Su et al.,

2005; Buffone et al., 2012). In addition, sperm tail proteins have

strong influence on motion patterns (Luconi & Baldi, 2003).

Thus, it is reasonable to suggest that changes in the number of

disrupted disulphide bonds of sperm tail proteins result in

changes of motility patterns, including those linked to capaci-

tated spermatozoa.

The effects of GSH on ROS were of lesser extent than those

observed in free cysteine residues and the increase of intracellu-

lar ROS following incubation of spermatozoa in CM was moder-

ate. While this moderate increase appeared to have no

deleterious effects, it could be, as previously suggested

(O’Flaherty, 2015), related to the achievement of sperm capacita-

tion. In this regard, it is worth noting that moderate changes in

intracellular ROS levels modulate the activity of protein kinases

and phosphatases that are involved in sperm capacitation (e.g.

protein kinase C, microtubule-associated protein kinases, PI3

kinase. . .; Wright et al., 2009; Corcoran & Cotter, 2013). Remark-

ably, GSH inhibited the increase of ROS observed during sperm

capacitation and also altered tyrosine phosphorylation of P32

and tyrosine-phosphorylated proteins evaluated through

immunolocalization. Therefore, our results match with previous

studies conducted in other species, which reported that ROS

partially modulates protein kinases and phosphatases involved

in sperm capacitation (Wright et al., 2009; Corcoran & Cotter,

2013).

When added together with progesterone, GSH had little effect.

This suggests that capacitated spermatozoa are less sensitive to

GSH because, after 4 h of incubation with CM, spermatozoa

have underwent the majority of changes that are modulated by

GSH. Furthermore, the fact that GSH has less influence when

added together with progesterone indicates that the events

related to acrosome exocytosis do not depend on ROS. In fact, a

sudden peak of O2 consumption and ATP synthesis has been

described immediately after the induction of acrosome exocyto-

sis with progesterone (Rami�o-Lluch et al., 2013). This peak

seems to be related to a coupled status of boar sperm mitochon-

dria upon acrosome reaction, whereas mitochondria are uncou-

pled before and after acrosome reaction (Rami�o-Lluch et al.,

2013; Yeste et al., 2015).

GSH decreases sperm motility either when added at 0 h or

when added at 4 h. These results suggest that the effects of GSH

on boar sperm motility do not entirely rely on disrupted disul-

phide bond of tail proteins and intracellular ROS levels. While it

is not possible, at this moment, to ascertain which this mecha-

nism is, we could hypothesize a putative one that would be

related to the control of redox-sensitive enzymes regulating tail

contractibility. In fact, proteins linked to the maintenance of cell

redox status, such as the Na+/K+-dependent ATPase (Liu et al.,

2012), are regulators of sperm motility (Koc�ak-Toker et al.,

2002). On the basis of our results, we suggest that the anti-oxida-

tive action of GSH would act on the sperm redox status, modu-

lating the activities of specific proteins, such as the Na+/K+-

dependent ATPase. This fact would explain why GSH modifies

sperm motility, both in capacitated and frozen-thawed sperma-

tozoa (Yeste et al., 2013). Thus, the different impact of GSH on

the motility of capacitated and frozen-thawed boar spermatozoa

would result from the existence of a different redox status in

each cell. More research is warranted to elucidate why GSH

exerts a dual effect on sperm motility.

In conclusion, in vitro capacitation of boar spermatozoa is

related to a partial disruption of disulphide bonds of sperm pro-

teins and an increase in intracellular ROS levels. These two phe-

nomena could also be involved in the decondensation of sperm

pronucleus after fertilization. In contrast, neither the increase in

ROS levels nor the disruption of disulphide bonds in sperm pro-

teins appear to play an instrumental role in the induction of

acrosome exocytosis induced by progesterone. Finally, the

effects of GSH on sperm motility suggest that this functional

parameter is partially controlled by ionic and redox

mechanisms.
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