157 research outputs found

    Medico-legal and obstetric challenges of recent demographic increases in Malta

    Get PDF
    The southern Mediterranean island of Malta, strategically located between North Africa and Europe and a full member of the European Union, offers an excellent European standard obstetric service. Yet, this obstetric service, like all other medical disciplines, is undergoing a severe evolutionary challenge imposed by rapid demographic shifts. It also finds itself without significant and relevant medico-legal legislation which is likely to lead to serious acute needs at the interface between the rapidly changing nature and number of foreigners residing in Malta and their medical needs, especially in the obstetric sector.The article looks at several factors, which argue for the immediate need of implementation of such legislation. One aspect of crucial importance is the demographic fact of rapidly changing profile of the patients making use of the Maltese Obstetric Service (MOS). This is the result of an influx of both EU nationals as well as irregular migrants, mostly of sub-Saharan origin. Both provide their own form of challenges to the MOS. In both, albeit more likely in the case of EU nationals, these challenges may easily find expression and resolution in eventual medico-legal action.

    Seismic markers of the Messinian salinity crisis in the deep Ionian Basin

    Get PDF
    We conduct the seismic signal analysis on vintage and recently collected multichannel seismic reflection profiles from the Ionian Basin to characterize the deep basin Messinian evaporites. These evaporites were deposited in deep and marginal Mediterranean sedimentary basins as a consequence of the “salinity crisis” between 5.97 and 5.33 Ma, a basin‐wide oceanographic and ecological crisis whose origin remains poorly understood. The seismic markers of the Messinian evaporites in the deep Mediterranean basins can be divided in two end‐members, one of which is the typical “trilogy” of gypsum and clastics (Lower Unit – LU), halite (Mobile Unit – MU) and upper anhydrite and marl layers (Upper Unit – UU) traced in the Western Mediterranean Basins. The other end‐member is a single MU unit subdivided in seven sub‐units by clastic interlayers located in the Levant Basin. The causes of these different seismic expressions of the Messinian salinity crisis (MSC) appear to be related to a morphological separation between the two basins by the structural regional sill of the Sicily Channel. With the aid of velocity analyses and seismic imaging via prestack migration in time and depth domains, we define for the first time the seismic signature of the Messinian evaporites in the deep Ionian Basin, which differs from the known end‐members. In addition, we identify different evaporitic depositional settings suggesting a laterally discontinuous deposition. With the information gathered we quantify the volume of evaporitic deposits in the deep Ionian Basin as 500,000 km3 ± 10%. This figure allows us to speculate that the total volume of salts in the Mediterranean basin is larger than commonly assumed. Different depositional units in the Ionian Basin suggest that during the MSC it was separated from the Western Mediterranean by physical thresholds, from the Po Plain/Northern Adriatic Basin, and the Levant Basin, likely reflecting different hydrological and climatic conditions. Finally, the evidence of erosional surfaces and V‐shaped valleys at the top of the MSC unit, together with sharp evaporites pinch out on evaporite‐free pre‐Messinian structural highs, suggest an extreme Messinian Stage 3 base level draw down in the Ionian Basin. Such evidence should be carefully evaluated in the light of Messinian and post‐Messinian vertical crustal movements in the area. The results of this study demonstrates the importance of extracting from seismic data the Messinian paleotopography, the paleomorphology and the detailed stratal architecture in the in order to advance in the understanding of the deep basins Messinian depositional environments. Highlights First description of a new type of deepwater Messinian salt giant in the Ionian Sea. First quantification of the Messinian salt volume in the Ionian Sea. New seismic evidence of erosional surfces and Lago Mare deposits in the deep Ionian Basin. Further evidence of sea level lowering during the Messinian Salinity Crisis. Evidence for a different, physically separated deepwater Messinian salt basins in the Mediterranean

    Reimbursement of innovative pharmaceuticals in English and Spanish hospitals-The example of isavuconazole.

    Get PDF
    Funder: Pfizer; Id: http://dx.doi.org/10.13039/100004319BACKGROUND: Kron et al (Mycoses, 64, 2021, 86) found cost savings for the use of the innovative pharmaceutical isavuconazole in the inpatient setting in Germany (Bismarck-based healthcare system). Little is known about the reimbursement of innovative pharmaceuticals in the inpatient setting of Beveridge-based healthcare systems. OBJECTIVES: The aim of this study was to evaluate the market access process and reimbursement of isavuconazole, exemplary for innovative pharmaceuticals, in England and Spain. PATIENTS/METHODS: Market access processes of both countries were described. Focussing on typical patient clusters for isavuconazole treatment, reimbursement data regarding inpatients with (i) allogeneic haematopoietic stem cell transplantation or (ii) acute myeloid leukaemia was considered. Data were publicly available and of high topicality (England 2020/2021, Spain 2018). Discounting and a currency conversion to Euro were applied. RESULTS: This study showed that market access processes of both countries are broadly similar. Further, full reimbursement of isavuconazole as an innovative pharmaceutical may lead to reduction in resource utilisation. Without medication costs, isavuconazole can thus result in cost savings for both patient clusters due to a reduction in length of stay. CONCLUSIONS: Expenses for innovative pharmaceuticals may be balanced or even lead to cost savings due to a reduction in length of stay. The latter contributes to a greater patient benefit. For both healthcare system, the analyses highlighted drugs' cost-effectiveness and assessing its added value into reimbursement decisions is highly relevant

    A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae

    Get PDF
    Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications

    Mechanical design of the optical modules intended for IceCube-Gen2

    Get PDF
    IceCube-Gen2 is an expansion of the IceCube neutrino observatory at the South Pole that aims to increase the sensitivity to high-energy neutrinos by an order of magnitude. To this end, about 10,000 new optical modules will be installed, instrumenting a fiducial volume of about 8 km3. Two newly developed optical module types increase IceCube’s current sensitivity per module by a factor of three by integrating 16 and 18 newly developed four-inch PMTs in specially designed 12.5-inch diameter pressure vessels. Both designs use conical silicone gel pads to optically couple the PMTs to the pressure vessel to increase photon collection efficiency. The outside portion of gel pads are pre-cast onto each PMT prior to integration, while the interiors are filled and cast after the PMT assemblies are installed in the pressure vessel via a pushing mechanism. This paper presents both the mechanical design, as well as the performance of prototype modules at high pressure (70 MPa) and low temperature (−40∘C), characteristic of the environment inside the South Pole ice

    Simulation and sensitivities for a phased IceCube-Gen2 deployment

    Get PDF

    A next-generation optical sensor for IceCube-Gen2

    Get PDF

    The next generation neutrino telescope: IceCube-Gen2

    Get PDF
    The IceCube Neutrino Observatory, a cubic-kilometer-scale neutrino detector at the geographic South Pole, has reached a number of milestones in the field of neutrino astrophysics: the discovery of a high-energy astrophysical neutrino flux, the temporal and directional correlation of neutrinos with a flaring blazar, and a steady emission of neutrinos from the direction of an active galaxy of a Seyfert II type and the Milky Way. The next generation neutrino telescope, IceCube-Gen2, currently under development, will consist of three essential components: an array of about 10,000 optical sensors, embedded within approximately 8 cubic kilometers of ice, for detecting neutrinos with energies of TeV and above, with a sensitivity five times greater than that of IceCube; a surface array with scintillation panels and radio antennas targeting air showers; and buried radio antennas distributed over an area of more than 400 square kilometers to significantly enhance the sensitivity of detecting neutrino sources beyond EeV. This contribution describes the design and status of IceCube-Gen2 and discusses the expected sensitivity from the simulations of the optical, surface, and radio components

    Sensitivity of IceCube-Gen2 to measure flavor composition of Astrophysical neutrinos

    Get PDF
    The observation of an astrophysical neutrino flux in IceCube and its detection capability to separate between the different neutrino flavors has led IceCube to constraint the flavor content of this flux. IceCube-Gen2 is the planned extension of the current IceCube detector, which will be about 8 times larger than the current instrumented volume. In this work, we study the sensitivity of IceCube-Gen2 to the astrophysical neutrino flavor composition and investigate its tau neutrino identification capabilities. We apply the IceCube analysis on a simulated IceCube-Gen2 dataset that mimics the High Energy Starting Event (HESE) classification. Reconstructions are performed using sensors that have 3 times higher quantum efficiency and isotropic angular acceptance compared to the current IceCube optical modules. We present the projected sensitivity for 10 years of data on constraining the flavor ratio of the astrophysical neutrino flux at Earth by IceCube-Gen2

    Estimating the coincidence rate between the optical and radio array of IceCube-Gen2

    Get PDF
    The IceCube-Gen2 Neutrino Observatory is proposed to extend the all-flavour energy range of IceCube beyond PeV energies. It will comprise two key components: I) An enlarged 8km3 in-ice optical Cherenkov array to measure the continuation of the IceCube astrophysical neutrino flux and improve IceCube\u27s point source sensitivity above ∌100TeV; and II) A very large in-ice radio array with a surface area of about 500km2. Radio waves propagate through ice with a kilometer-long attenuation length, hence a sparse radio array allows us to instrument a huge volume of ice to achieve a sufficient sensitivity to detect neutrinos with energies above tens of PeV. The different signal topologies for neutrino-induced events measured by the optical and in-ice radio detector - the radio detector is mostly sensitive to the cascades produced in the neutrino interaction, while the optical detector can detect long-ranging muon and tau leptons with high accuracy - yield highly complementary information. When detected in coincidence, these signals will allow us to reconstruct the neutrino energy and arrival direction with high fidelity. Furthermore, if events are detected in coincidence with a sufficient rate, they resemble the unique opportunity to study systematic uncertainties and to cross-calibrate both detector components
    • 

    corecore