45 research outputs found

    CA19.9 antigen circulating in the serum of colon cancer patients: Where is it from?

    Get PDF
    CA19.9 antigen is a glycoprotein present in human serum and found elevated in various diseases. It is intensively studied since long time as a potential marker for managing cancers of the gastrointestinal tract, but its reliability is widely accepted only for pancreatic cancers. Here, we focused on the tetrasaccharide epitope (NeuAc\u3b12-3Gal\u3b21-3[Fuc\u3b11-4]GlcNAc) sialyl-Lewis a studying the biosynthesis, expression, and secretion in colon cancers and related cancer cell lines. We found that the \u3b21,3 galactosyltransferase \u3b23Gal-T5, responsible for sialyl-Lewis a synthesis, is dramatically reduced in colon adenocarcinomas, in terms of both transcript and enzyme activity levels. Moreover, no or very faint antigen is detectable in colon cancer homogenates, by dot-blot or enzyme immunoassay, while it is commonly evident in sera from different patients. In cancer cell lines synthesizing CA19.9, the amount of antigen secreted is proportional to that expressed on the cell surface, and depends on appreciable levels of \u3b23Gal-T5, which appear much higher than those measured in colon cancer specimens. Since colon cancers appear unable to synthesize relevant amount of CA19.9, we suggest that the antigen circulating in the serum of colon cancer patients may have a different and more complex origin than expected so far

    Role of Sphingolipids in the Pathobiology of Lung Inflammation

    Get PDF
    Sphingolipid bioactivities in the respiratory airways and the roles of the proteins that handle them have been extensively investigated. Gas or inhaled particles or microorganisms come into contact with mucus components, epithelial cells, blood barrier, and immune surveillance within the airways. Lung structure and functionality rely on a complex interplay of polar and hydrophobic structures forming the surfactant layer and governing external-internal exchanges, such as glycerol-phospholipids sphingolipids and proteins. Sphingolipids act as important signaling mediators involved in the control of cell survival and stress response, as well as secreted molecules endowed with inflammation-regulatory activities. Most successful respiratory infection and injuries evolve in the alveolar compartment, the critical lung functional unit involved in gas exchange. Sphingolipid altered metabolism in this compartment is closely related to inflammatory reaction and ceramide increase, in particular, favors the switch to pathological hyperinflammation. This short review explores a few mechanisms underlying sphingolipid involvement in the healthy lung (surfactant production and endothelial barrier maintenance) and in a selection of lung pathologies in which the impact of sphingolipid synthesis and metabolism is most apparent, such as acute lung injury, or chronic pathologies such as cystic fibrosis and chronic obstructive pulmonary disease. A Brief Overview on Sphingolipids within the Lung Environment The interest in sphingolipid presence and bioactivities in the respiratory airways has produced a steady number of reports since the 1970s. However, a host of publications in the last few years have provided an increasingly detailed picture of the role played in the lungs by this class of lipids and by the proteins that handle them. As vital respiratory organs that mediate air-blood gas exchanges, lungs must undergo delicate and tightly controlled developmental transitions. Antenatally, a 20-week human fetus displays lungs that have branched to generate all airways, but it is not before ∼28 weeks of gestation that alveolarization begins from primordial saccular structures and type I alveolar cells differentiate from the cuboidal epithelium. Concomitantly, at this stage endothelial cells shape the alveolar capillary bed and type II alveolar cells appear, to demarcate alveolar septal junctions. Type II cells start producing surfactant, which accumulates to increasing concentrations by term. The initiation of autonomous ventilation at birth represents a dramatic switch in postnatal lung function. While throughout gestation a chloride-ion driven liquid secretion creates a positive pressure that distends the lungs and stimulates growth, a sudden reversal from net secretion to net adsorption takes place at birth under the effect of O 2 and hormones (epinephrine, glucocorticoids, and thyroid hormones), enabling the rapid elimination of lung liquid. From this moment on, lung lumen will maintain a low-level chloride-ion based liquid secretion to generate a surface liquid layer, known as surfactant and formed by specific secreted lipids and proteins, and a robust absorptive capacity will prevent alveolar flooding and edema. Equally important, being permanently exposed to inhaled particles and microorganisms from birth, pulmonary immunity must be tuned to effectively dispose of them, while minimizing immunopathology to preserve appropriate gas exchange. Thus, the first-line lung defenses, prior to immunity, are based on mechanical weapons including cilia, mucus, and the cough reflex, which concur to prevent pathogen access to the lower airways and in so doing avoid an overt inflammatory response. This is one of the major reasons why lungs are particularly sensitive to the sphingolipid (and Hindawi Publishing Corporatio

    Myriocin modulates the altered lipid metabolism and storage in cystic fibrosis.

    Get PDF
    Cystic fibrosis (CF) is a hereditary disease mostly related to ΔF508 CFTR mutation causing a proteinopathy that is characterized by multiple organ dysfunction, primarily lungs chronic inflammation, and infection. Defective autophagy and accumulation of the inflammatory lipid ceramide have been proposed as therapeutic targets. Accumulation of lipids and cholesterol was reported in the airways of CF patients, together with altered triglycerides and cholesterol levels in plasma, thus suggesting a disease-related dyslipidemia. Myriocin, an inhibitor of sphingolipids synthesis, significantly reduces inflammation and activates TFEB-induced response to stress, enhancing fatty acids oxidation and promoting autophagy. Myriocin ameliorates the response against microbial infection in CF models and patients' monocytes. Here we show that CF broncho-epithelial cells exhibit an altered distribution of intracellular lipids. We demonstrated that lipid accumulation is supported by an enhanced synthesis of fatty acids containing molecules and that Myriocin is able to reduce such accumulation. Moreover, Myriocin modulated the transcriptional profile of CF cells in order to restore autophagy, activate an anti-oxidative response, stimulate lipid metabolism and reduce lipid peroxidation. Moreover, lipid storage may be altered in CF cells, since we observed a reduced expression of lipid droplets related proteins named perilipin 3 and 5 and seipin. To note, Myriocin up-regulates the expression of genes that are involved in lipid droplets biosynthesis and maturation. We suggest that targeting sphingolipids de novo synthesis may counteract lipids accumulation by modulating CF altered transcriptional profile, thus restoring autophagy and lipid metabolism homeostasis

    The ACTyourCHANGE study protocol: promoting a healthy lifestyle in patients with obesity with Acceptance and Commitment Therapy-a randomized controlled trial

    Get PDF
    BackgroundAs treatment of choice in promoting psychological flexibility, Acceptance and Commitment Therapy (ACT) was found to be effective in several conditions, and among different populations, including weight management in individuals with obesity. However, the mechanism of action of psychological flexibility is less known. The aim of the present study is, within the context of a brief ACT intervention for behavioral change and behavioral maintenance of a healthy lifestyle in a sample of inpatients with obesity, to explore the effect of each subcomponent of the psychological flexibility model on treatment processes and outcomes.MethodsA randomized controlled trial will be conducted. Ninety Italian adult inpatients with obesity attending a rehabilitation program for weight loss will be randomly allocated into three experimental conditions targeting respectively each subcomponent of the psychological flexibility model: group Engage focused on values-oriented behaviors, group Openness focused on acceptance and cognitive defusion, and group Awareness focused on being present and aware of thoughts, feelings, and behaviors at every moment. Weight, BMI (kg/m(2)), the Psychological General Well-Being Inventory (PGWBI), the Outcome Questionnaire-45.2 (OQ-45.2), the Depression Anxiety and Stress Scale (DASS-21), the Difficulties in Emotion Regulation Scale (DERS), the Dutch Eating Behaviors Questionnaire (DEBQ), the Brief Values Inventory (BVI), the Committed Action Questionnaire (CAQ), the Italian-Cognitive Fusion Questionnaire (I-CFQ), the Five Facet Mindfulness Questionnaire (FFMQ), and the Acceptance and Action Questionnaire (AAQ-II) will be assessed at the beginning (time 0), at the end of psychological intervention (time 1), and after 3 (time 2) and 6months (time 3) and 9months (time 4) from discharge. During the following month after discharge, outpatients will be monitored in their adherence to a healthy lifestyle, using a wearable device.To assess the effectiveness of the intervention, mixed between-within 3 (conditions) x4 (times) repeated measure ANOVAs will be conducted to examine changes from time 0 to time 1, 2, 3, and 4 in means of weight, BMI, and means of scores PGWBI, OQ-45.2, DASS, DERS, DEBQ, AAQ-II, BVI, CAQ, I-CFQ, and FFMQ, between three groups.DiscussionThis study will contribute to clarify the mechanism of action of each subcomponent of the psychological flexibility model and understand its impact on the promotion of a healthy lifestyle.Trial registrationClinicalTrials.govNCT04474509. Registered on July 4, 202

    Effects of Dual Targeting of Tumor Cells and Stroma in Human Glioblastoma Xenografts with a Tyrosine Kinase Inhibitor against c-MET and VEGFR2

    Get PDF
    Contains fulltext : 118357.pdf (publisher's version ) (Open Access)Anti-angiogenic treatment of glioblastoma with Vascular Endothelial Growth Factor (VEGF)- or VEGF Receptor 2 (VEGFR2) inhibitors normalizes tumor vessels, resulting in a profound radiologic response and improved quality of life. This approach however does not halt tumor progression by diffuse infiltration, as this phenotype is less angiogenesis dependent. Combined inhibition of angiogenesis and diffuse infiltrative growth would therefore be a more effective treatment approach in these tumors. The HGF/c-MET axis is important in both angiogenesis and cell migration in several tumor types including glioma. We therefore analyzed the effects of the c-MET- and VEGFR2 tyrosine kinase inhibitor cabozantinib (XL184, Exelixis) on c-MET positive orthotopic E98 glioblastoma xenografts, which routinely present with angiogenesis-dependent areas of tumor growth, as well as diffuse infiltrative growth. In cultures of E98 cells, cabozantinib effectively inhibited c-MET phosphorylation, concomitant with inhibitory effects on AKT and ERK1/2 phosphorylation, and cell proliferation and migration. VEGFR2 activation in endothelial cells was also effectively inhibited . Treatment of BALB/c nu/nu mice carrying orthotopic E98 xenografts resulted in a significant increase in overall survival. Cabozantinib effectively inhibited angiogenesis, resulting in increased hypoxia in angiogenesis-dependent tumor areas, and induced vessel normalization. Yet, tumors ultimately escaped cabozantinib therapy by diffuse infiltrative outgrowth via vessel co-option. Of importance, in contrast to the results from experiments, blockade of c-MET activation was incomplete, possibly due to multiple factors including restoration of the blood-brain barrier resulting from cabozantinib-induced VEGFR2 inhibition. In conclusion, cabozantinib is a promising therapy for c-MET positive glioma, but improving delivery of the drug to the tumor and/or the surrounding tissue may be needed for full activity

    Remodeling of the chromatin structure of the facioscapulohumeral muscular dystrophy (FSHD) locus and upregulation of FSHD-related gene 1 (FRG1) expression during human myogenic differentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder associated with the partial deletion of integral numbers of 3.3 kb D4Z4 DNA repeats within the subtelomere of chromosome 4q. A number of candidate FSHD genes, adenine nucleotide translocator 1 gene (<it>ANT1</it>), FSHD-related gene 1 (<it>FRG1</it>), <it>FRG2 </it>and <it>DUX4c</it>, upstream of the D4Z4 array (FSHD locus), and double homeobox chromosome 4 (<it>DUX4</it>) within the repeat itself, are upregulated in some patients, thus suggesting an underlying perturbation of the chromatin structure. Furthermore, a mouse model overexpressing <it>FRG1 </it>has been generated, displaying skeletal muscle defects.</p> <p>Results</p> <p>In the context of myogenic differentiation, we compared the chromatin structure and tridimensional interaction of the D4Z4 array and <it>FRG1 </it>gene promoter, and <it>FRG1 </it>expression, in control and FSHD cells. The <it>FRG1 </it>gene was prematurely expressed during FSHD myoblast differentiation, thus suggesting that the number of D4Z4 repeats in the array may affect the correct timing of <it>FRG1 </it>expression. Using chromosome conformation capture (3C) technology, we revealed that the <it>FRG1 </it>promoter and D4Z4 array physically interacted. Furthermore, this chromatin structure underwent dynamic changes during myogenic differentiation that led to the loosening of the <it>FRG1</it>/4q-D4Z4 array loop in myotubes. The <it>FRG1 </it>promoter in both normal and FSHD myoblasts was characterized by H3K27 trimethylation and Polycomb repressor complex binding, but these repression signs were replaced by H3K4 trimethylation during differentiation. The D4Z4 sequences behaved similarly, with H3K27 trimethylation and Polycomb binding being lost upon myogenic differentiation.</p> <p>Conclusion</p> <p>We propose a model in which the D4Z4 array may play a critical chromatin function as an orchestrator of <it>in cis </it>chromatin loops, thus suggesting that this repeat may play a role in coordinating gene expression.</p

    Functional diversity and co-operativity between subclonal populations of paediatric glioblastoma and diffuse intrinsic pontine glioma cells

    Get PDF
    The failure to develop effective therapies for pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG) is in part due to their intrinsic heterogeneity. We aimed to quantitatively assess the extent to which this was present in these tumors through subclonal genomic analyses and to determine whether distinct tumor subpopulations may interact to promote tumorigenesis by generating subclonal patient-derived models in vitro and in vivo. Analysis of 142 sequenced tumors revealed multiple tumor subclones, spatially and temporally coexisting in a stable manner as observed by multiple sampling strategies. We isolated genotypically and phenotypically distinct subpopulations that we propose cooperate to enhance tumorigenicity and resistance to therapy. Inactivating mutations in the H4K20 histone methyltransferase KMT5B (SUV420H1), present in <1% of cells, abrogate DNA repair and confer increased invasion and migration on neighboring cells, in vitro and in vivo, through chemokine signaling and modulation of integrins. These data indicate that even rare tumor subpopulations may exert profound effects on tumorigenesis as a whole and may represent a new avenue for therapeutic development. Unraveling the mechanisms of subclonal diversity and communication in pGBM and DIPG will be an important step toward overcoming barriers to effective treatments

    Role of Sphingolipids in the Pathobiology of Lung Inflammation

    Get PDF
    Sphingolipid bioactivities in the respiratory airways and the roles of the proteins that handle them have been extensively investigated. Gas or inhaled particles or microorganisms come into contact with mucus components, epithelial cells, blood barrier, and immune surveillance within the airways. Lung structure and functionality rely on a complex interplay of polar and hydrophobic structures forming the surfactant layer and governing external-internal exchanges, such as glycerol-phospholipids sphingolipids and proteins. Sphingolipids act as important signaling mediators involved in the control of cell survival and stress response, as well as secreted molecules endowed with inflammation-regulatory activities. Most successful respiratory infection and injuries evolve in the alveolar compartment, the critical lung functional unit involved in gas exchange. Sphingolipid altered metabolism in this compartment is closely related to inflammatory reaction and ceramide increase, in particular, favors the switch to pathological hyperinflammation. This short review explores a few mechanisms underlying sphingolipid involvement in the healthy lung (surfactant production and endothelial barrier maintenance) and in a selection of lung pathologies in which the impact of sphingolipid synthesis and metabolism is most apparent, such as acute lung injury, or chronic pathologies such as cystic fibrosis and chronic obstructive pulmonary disease

    2-Acetyl-5-tetrahydroxybutyl imidazole (THI) protects 661W cells against oxidative stress

    Get PDF
    Retinal degeneration and in particular retinitis pigmentosa (RP) is associated to ceramide (Cer) accumulation and cell death induction. Cer and sphingosine-1-phosphate (S1P) belong to the sphingolipids class and exert a pro-apoptotic and pro-survival activity, respectively. Our aim is to target sphingolipid metabolism by inhibiting S1P lyase that regulates one of the S1P degradation pathways, to reduce retinal photoreceptor damage. The murine 661W cone-like cell line was pretreated with THI, an inhibitor of S1P lyase and exposed to H2O2-induced oxidative stress. 661W cell viability and apoptosis were evaluated by Trypan Blue and TUNEL assay, respectively. Protein expression of mediators of the survival/death pathway (ERK1/2, Akt, Bcl-2, Bax) was analyzed by Western blotting. RT-PCR was performed to establish HO-1 transcript changes and LC-MS analysis to measure Cer intracellular content. THI rescues inhibitory H2O2-effect on 661W cell viability and impairs H2O2-induced apoptosis by increasing Bcl-2/Bax ratio. THI administration counteracts the oxidative stress effects of H2O2 on 661W cells by activating the Nrf2/HO-1 pathway, regulating ERK and Akt phosphorylation levels, and decreasing Cer intracellular content. We conclude that sphingolipid metabolism manipulation can be considered a therapeutic target to promote photoreceptor survival. © 2017 Springer-Verlag Berlin HeidelbergPeer reviewe
    corecore