265 research outputs found

    A Single-Cell Level and Connectome-Derived Computational Model of the Drosophila Brain

    Get PDF
    Computer simulations play an important role in testing hypotheses, integrating knowledge, and providing predictions of neural circuit functions. While considerable effort has been dedicated into simulating primate or rodent brains, the fruit fly (Drosophila melanogaster) is becoming a promising model animal in computational neuroscience for its small brain size, complex cognitive behavior, and abundancy of data available from genes to circuits. Moreover, several Drosophila connectome projects have generated a large number of neuronal images that account for a significant portion of the brain, making a systematic investigation of the whole brain circuit possible. Supported by FlyCircuit (http://www.flycircuit.tw), one of the largest Drosophila neuron image databases, we began a long-term project with the goal to construct a whole-brain spiking network model of the Drosophila brain. In this paper, we report the outcome of the first phase of the project. We developed the Flysim platform, which (1) identifies the polarity of each neuron arbor, (2) predicts connections between neurons, (3) translates morphology data from the database into physiology parameters for computational modeling, (4) reconstructs a brain-wide network model, which consists of 20,089 neurons and 1,044,020 synapses, and (5) performs computer simulations of the resting state. We compared the reconstructed brain network with a randomized brain network by shuffling the connections of each neuron. We found that the reconstructed brain can be easily stabilized by implementing synaptic short-term depression, while the randomized one exhibited seizure-like firing activity under the same treatment. Furthermore, the reconstructed Drosophila brain was structurally and dynamically more diverse than the randomized one and exhibited both Poisson-like and patterned firing activities. Despite being at its early stage of development, this single-cell level brain model allows us to study some of the fundamental properties of neural networks including network balance, critical behavior, long-term stability, and plasticity

    Ventricular divergence correlates with epicardial wavebreaks and predicts ventricular arrhythmia in isolated rabbit hearts during therapeutic hypothermia

    Get PDF
    INTRODUCTION: High beat-to-beat morphological variation (divergence) on the ventricular electrogram during programmed ventricular stimulation (PVS) is associated with increased risk of ventricular fibrillation (VF), with unclear mechanisms. We hypothesized that ventricular divergence is associated with epicardial wavebreaks during PVS, and that it predicts VF occurrence. METHOD AND RESULTS: Langendorff-perfused rabbit hearts (n = 10) underwent 30-min therapeutic hypothermia (TH, 30°C), followed by a 20-min treatment with rotigaptide (300 nM), a gap junction modifier. VF inducibility was tested using burst ventricular pacing at the shortest pacing cycle length achieving 1:1 ventricular capture. Pseudo-ECG (p-ECG) and epicardial activation maps were simultaneously recorded for divergence and wavebreaks analysis, respectively. A total of 112 optical and p-ECG recordings (62 at TH, 50 at TH treated with rotigaptide) were analyzed. Adding rotigaptide reduced ventricular divergence, from 0.13±0.10 at TH to 0.09±0.07 (p = 0.018). Similarly, rotigaptide reduced the number of epicardial wavebreaks, from 0.59±0.73 at TH to 0.30±0.49 (p = 0.036). VF inducibility decreased, from 48±31% at TH to 22±32% after rotigaptide infusion (p = 0.032). Linear regression models showed that ventricular divergence correlated with epicardial wavebreaks during TH (p<0.001). CONCLUSION: Ventricular divergence correlated with, and might be predictive of epicardial wavebreaks during PVS at TH. Rotigaptide decreased both the ventricular divergence and epicardial wavebreaks, and reduced the probability of pacing-induced VF during TH

    Postchemoradiotherapy Pathologic Stage Classified by the American Joint Committee on the Cancer Staging System Predicts Prognosis of Patients with Locally Advanced Esophageal Squamous Cell Carcinoma

    Get PDF
    IntroductionTo determine whether the postchemoradiotherapy (post-CRT) pathologic stage predicts the outcomes of patients with locally advanced esophageal squamous cell carcinoma (ESCC) undergoing preoperative CRT followed by surgery.MethodsFrom three phase II trials of preoperative CRT for locally advanced ESCC, 140 patients were included. Preoperative CRT comprised twice weekly paclitaxel and cisplatin-based regimens and 40-Gy radiotherapy in 20 fractions. The post-CRT pathologic stage was classified according to the American Joint Committee on Cancer, 7th edition staging system. The prognostic effects of clinicopathologic factors were analyzed using Cox regression.ResultsWith a median follow-up of 61.9 months, the median progression-free survival (PFS) and overall survival (OS) of the entire cohort were 24.5 and 30.9 months, respectively. The post-CRT pathologic stage was 0 in 34.5%, I in 12.9%, II in 29.3%, III in 13.6%, and ypT0N1-2 in 6.4% of the patients. The median PFS was 47.2, 25.9, 16.0, 9.4, and 15.1 months, and the median OS was 57.4, 34.1, 26.2, 14.1, and 17.6 months for patients with post-CRT pathologic stage 0, I, II, III, and ypT0N1-2, respectively. In multivariate analysis, performance status (p < 0.001), tumor location (p = 0.016), and extranodal extension (p = 0.024) were independent prognostic factors for PFS, whereas performance status (p < 0.001) and post-CRT pathologic stage (p = 0.027) were independent prognostic factors for OS.ConclusionsThe post-CRT pathologic stage classified by American Joint Committee on Cancer, 7th edition staging system predicted the survival of locally advanced ESCC patients who underwent preoperative paclitaxel and cisplatin-based CRT followed by esophagectomy

    miRTarBase: a database curates experimentally validated microRNA–target interactions

    Get PDF
    MicroRNAs (miRNAs), i.e. small non-coding RNA molecules (∼22 nt), can bind to one or more target sites on a gene transcript to negatively regulate protein expression, subsequently controlling many cellular mechanisms. A current and curated collection of miRNA–target interactions (MTIs) with experimental support is essential to thoroughly elucidating miRNA functions under different conditions and in different species. As a database, miRTarBase has accumulated more than 3500 MTIs by manually surveying pertinent literature after data mining of the text systematically to filter research articles related to functional studies of miRNAs. Generally, the collected MTIs are validated experimentally by reporter assays, western blot, or microarray experiments with overexpression or knockdown of miRNAs. miRTarBase curates 3576 experimentally verified MTIs between 657 miRNAs and 2297 target genes among 17 species. miRTarBase contains the largest amount of validated MTIs by comparing with other similar, previously developed databases. The MTIs collected in the miRTarBase can also provide a large amount of positive samples to develop computational methods capable of identifying miRNA–target interactions. miRTarBase is now available on http://miRTarBase.mbc.nctu.edu.tw/, and is updated frequently by continuously surveying research articles

    High-throughput discovery of genetic determinants of circadian misalignment.

    Get PDF
    Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice

    Two first-in-human studies of xentuzumab, a humanised insulin-like growth factor (IGF)-neutralising antibody, in patients with advanced solid tumours

    Get PDF
    BACKGROUND: Xentuzumab, an insulin-like growth factor (IGF)-1/IGF-2-neutralising antibody, binds IGF-1 and IGF-2, inhibiting their growth-promoting signalling. Two first-in-human trials assessed the maximum-tolerated/relevant biological dose (MTD/RBD), safety, pharmacokinetics, pharmacodynamics, and activity of xentuzumab in advanced/metastatic solid cancers. METHODS: These phase 1, open-label trials comprised dose-finding (part I; 3 + 3 design) and expansion cohorts (part II; selected tumours; RBD [weekly dosing]). Primary endpoints were MTD/RBD. RESULTS: Study 1280.1 involved 61 patients (part I: xentuzumab 10–1800 mg weekly, n = 48; part II: 1000 mg weekly, n = 13); study 1280.2, 64 patients (part I: 10–3600 mg three-weekly, n = 33; part II: 1000 mg weekly, n = 31). One dose-limiting toxicity occurred; the MTD was not reached for either schedule. Adverse events were generally grade 1/2, mostly gastrointestinal. Xentuzumab showed dose-proportional pharmacokinetics. Total plasma IGF-1 increased dose dependently, plateauing at ~1000 mg/week; at ≥450 mg/week, IGF bioactivity was almost undetectable. Two partial responses occurred (poorly differentiated nasopharyngeal carcinoma and peripheral primitive neuroectodermal tumour). Integration of biomarker and response data by Bayesian Logistic Regression Modeling (BLRM) confirmed the RBD. CONCLUSIONS: Xentuzumab was well tolerated; MTD was not reached. RBD was 1000 mg weekly, confirmed by BLRM. Xentuzumab showed preliminary anti-tumour activity
    • …
    corecore