54 research outputs found

    Daphniaperformance on diets containing different combinations of high-quality algae, heterotrophic bacteria, and allochthonous particulate organic matter

    Get PDF
    Filter-feeding zooplankton in lakes feed on a mixture of phytoplankton, bacteria, and terrestrial particles and the proportions and nutritional value of these components can be highly variable. However, the extent to which food quality interacts with food quantity in affecting overall zooplankton performance is not yet fully resolved. Here we performed laboratory feeding experiments to test how the performance of the unselective filter feederDaphnia galeatawas affected if various quantities of high-quality food (the phytoplanktonRhodomonas) were diluted with low-quality food such as heterotrophic bacteria (Pseudomonas) or terrestrial detritus particles (t-POM) from the riparian zone of a boreal forest stream. We hypothesised: that increased proportions of bacteria and t-POM in the diet will lead to decreased survival, somatic growth; and reproduction ofDaphniadespite the presence of phytoplankton; that these effects are more pronounced for t-POM than for heterotrophic bacteria; and that this response is stronger when phytoplankton availability is low. Increasing the concentrations ofPseudomonasaffectedDaphniasurvival, growth, and reproduction negatively whenRhodomonaswas available at intermediate (0.37 mgC/L) and high (0.55 mgC/L) quantities. WhenRhodomonasquantity was low (0.22 mgC/L), the addition ofPseudomonasgenerally resulted in betterDaphniaperformance except at very high concentrations of the bacterium relative toRhodomonas. In contrast, the addition of t-POM was detrimental for overallDaphniaperformance at allRhodomonasconcentrations. Daphniaperformance was best described by a model including the interaction between food quality and quantity, with stronger negative effects onDaphniawhen high-quality food was supplemented with t-POM than withPseudomonas. The results indicate that the ability of zooplankton to use low-quality food is affected by the concurrent availability of high-quality food. Furthermore, food sources that can be used but do not fulfil dietary requirements of grazers (e.g. bacteria), may still provide nutritional benefits as long as other complementary food components are available in sufficient quantities to compensate for biochemical deficiencies. Therefore, we conclude that heterotrophic bacteria, but not peat layer t-POM, can be an important component of zooplankton diets in boreal lakes, especially if the concentration of phytoplankton is low

    Intraspecific Autochthonous and Allochthonous Resource Use by Zooplankton in a Humic Lake during the Transitions between Winter, Summer and Fall

    No full text
    Seasonal patterns in assimilation of externally produced, allochthonous, organic matter into aquatic food webs are poorly understood, especially in brown-water lakes. We studied the allochthony (share biomass of terrestrial origin) in cladoceran, calanoid and cyclopoid micro-crustacean zooplankton from late winter to fall during two years in a small humic lake (Sweden). The use of allochthonous resources was important for sustaining a small population of calanoids in the water column during late winter. However, in summer the calanoids shifted to 100% herbivory, increasing their biomass several-fold by making efficient use of the pelagic primary production. In contrast, the cyclopoids and cladocerans remained at high levels of allochthony throughout the seasons, both groups showing the mean allochthony of 0.56 (range in mean 0.17-0.79 and 0.34-0.75, for the respective group, depending on model parameters). Our study shows that terrestrial organic matter can be an important resource for cyclopoids and cladocerans on an annual basis, forming a significant link between terrestrial organic matter and the higher trophic levels of the food web, but it can also be important for sustaining otherwise herbivorous calanoids during periods of low primary production in late winter

    Nitrogen effects on the pelagic food web are modified by dissolved organic carbon

    No full text
    Global environmental change has altered the nitrogen (N) cycle and enhanced terrestrial dissolved organic carbon (DOC) loadings to northern boreal lakes. However, it is still unclear how enhanced N availability affects pelagic food web efficiency (FWE) and crustacean zooplankton growth in N limited boreal lakes. Here, we performed in situ mesocosm experiments in six unproductive boreal Swedish lakes, paired across a DOC gradient, with one lake in each pair fertilized with N (2011: reference year; 2012, 2013: impact years). We assessed how zooplankton growth and FWE were affected by changes in pelagic energy mobilization (PEM), food chain length (phytoplankton versus bacterial production based food chain, i.e. PP:BP), and food quality (seston stoichiometry) in response to N fertilization. Although PP, PEM and PP:BP increased in low and medium DOC lakes after N fertilization, consumer growth and FWE were reduced, especially at low DOC-potentially due to reduced phytoplankton food quality [increased C: phosphorus (P); N:P]. At high DOC, N fertilization caused modest increases in PP and PEM, with marginal changes in PP:BP and phytoplankton food quality, which, combined, led to a slight increase in zooplankton growth and FWE. Consequently, at low DOC (<12 mg L-1), increased N availability lowers FWE due to mismatches in food quality demand and supply, whereas at high DOC this mismatch does not occur, and zooplankton production and FWE may increase. We conclude that the lake DOC level is critical for predicting the effects of enhanced inorganic N availability on pelagic productivity in boreal lakes

    Intraspecific Autochthonous and Allochthonous Resource Use by Zooplankton in a Humic Lake during the Transitions between Winter, Summer and Fall

    No full text
    Seasonal patterns in assimilation of externally produced, allochthonous, organic matter into aquatic food webs are poorly understood, especially in brown-water lakes. We studied the allochthony (share biomass of terrestrial origin) in cladoceran, calanoid and cyclopoid micro-crustacean zooplankton from late winter to fall during two years in a small humic lake (Sweden). The use of allochthonous resources was important for sustaining a small population of calanoids in the water column during late winter. However, in summer the calanoids shifted to 100% herbivory, increasing their biomass several-fold by making efficient use of the pelagic primary production. In contrast, the cyclopoids and cladocerans remained at high levels of allochthony throughout the seasons, both groups showing the mean allochthony of 0.56 (range in mean 0.17-0.79 and 0.34-0.75, for the respective group, depending on model parameters). Our study shows that terrestrial organic matter can be an important resource for cyclopoids and cladocerans on an annual basis, forming a significant link between terrestrial organic matter and the higher trophic levels of the food web, but it can also be important for sustaining otherwise herbivorous calanoids during periods of low primary production in late winter

    Roma kiskorúak kilátásai a családi és társadalmi hatások tükrében

    Get PDF
    Szakdolgozatom a roma származású fiatalkorúak beilleszkedési zavarainak, identitásuk alakulásának tényezői s az azt alakító hatások mentén épül fel. Mikro- és makro környezeti szinten megjelenítve azokat a körülményeket és hatásokat, amelyek tényezőkként funkcionálva hozzájárulnak hátrányos, illetve veszélyeztetett helyzetük kialakulásához. Ebben a tekintetben kitérve a család – mint az alapvető szükségletek és feltételek megteremtője ugyanakkor, mint az elsődleges szocializációs színtér – vonatkozására, valamint a társadalmi közvélekedés jellegére. Vizsgálva a többség-kisebbség viszonyának lecsapódásait a roma családok kilátásaira s a gyermekek integrációs lehetőségeire. Mindezekkel összefüggésben s abból a tényből kiindulva, hogy a roma származású gyermekek felülreprezentáltak a magyar gyermekvédelemben, állami gondoskodásba kerülésük mentén kutatom azon további okokat és körülményeket, amelyek elősegíthetnek vagy akár teret engedhetnek olyan jelenségeknek, melyek befolyásolhatják a roma kiskorú azon stratégiáit, ahogyan alkalmazkodik s viszonyul a társadalmi rendhez. A koncepció mind struktúrában, mind tartalmilag arra épül, hogy a roma kiskorú közvetlen életterének feltételei, továbbá a társadalmi hatások minősége – valószínűsíthetően, de nem általánosítva - elvezet a gyermekvédelem kapujához s azon belépve hogyan alakul a már esetlegesen meglévő zavarokkal együttesen a gyermek identitása, alkalmazkodási hajlandósága.BscSzociális munk

    Contrasting plankton stoichiometry and nutrient regeneration in northern arctic and boreal lakes

    No full text
    Contrasting carbon: nitrogen: phosphorus (C: N: P) stoichiometry between phytoplankton and zooplankton affect consumer growth and phytoplankton nutrient limitation via nutrient recycling by zooplankton. However, no study has assessed how regional differences in terrestrial loadings of organic matter affect plankton N: P stoichiometry and recycling in systems with low N deposition and N-limited phytoplankton. We address this question by using data from 14 unproductive headwater arctic and boreal lakes. We found that boreal lakes had higher lake water-and seston C, N and P concentrations than arctic lakes, whereas seston C: N, C: P and N: P ratios did not differ among regions. Boreal zooplankton were also richer in N and P relative to C, with lower somatic N: P ratios, compared to arctic lakes. Consequently, the estimated N: P imbalances between seston and zooplankton were negative in arctic lakes, indicating zooplankton feeding on phytoplankton of suboptimal N content, resulting in low consumer driven N: P recycling (medians arctic sub-mid and high altitude lakes: 11 and 13). In boreal lakes, estimated N: P imbalance did not differ from zero, with a seston N: P stoichiometry matching the N: P requirements of zooplankton, which resulted in higher consumer driven N: P recycling (median 18). Our results imply that regional climate induced catchment differences, through enhanced terrestrial nutrient inputs, affect plankton stoichiometry by raising consumer N: P recycling ratio and changing zooplankton from being mainly N-(arctic) to NP co-limited (boreal). Browning of lakes, in regions with low N deposition, may therefore promote large-scale regional changes in plankton nutrient limitation with potential feedbacks on pelagic food webs

    N-limited consumer growth and low nutrient regeneration N:P ratios in lakes with low N deposition

    No full text
    Nutrient limitation of primary producers and their consumers can have a large influence on ecosystem productivity. The nature and strength of nutrient limitation is driven both by external factors (e.g., nutrient loading) and internal processes (e.g., consumer-driven nutrient regeneration). Here we present results from a field study in 10 low productive headwater lakes in northern subarctic Sweden, where nitrogen (N) deposition is low and phytoplankton is primarily N-limited. We assessed the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of seston and zooplankton and estimated the N:P ratio of consumer-driven nutrient regeneration. Based on stoichiometric models, the estimated elemental imbalances between seston and zooplankton suggest that zooplankton were mainly N-limited and regenerated nutrients with low N:P ratios (median 11.9, atomic ratio). The predicted N:P regeneration ratios were consistent with results from phytoplankton nutrient limitation bioassays in mid-summer, i.e., the N:P regeneration was predicted to be low when phytoplankton were N-limited, and high when phytoplankton were P-limited. During other seasons, when water discharge was high, nutrient loading from the surrounding catchments apparently had the strongest effect on phytoplankton nutrient limitation. We propose that lakes with higher N:P ratios than the open ocean is an effect of N deposition, that N-limitation of consumers and phytoplankton is further enhanced by low nutrient regeneration N:P ratios, and that in the absence of N deposition, lake and ocean N:P stoichiometry are similar

    Testing the light : nutrient hypothesis in an oligotrophic boreal lake

    No full text
    Anthropogenic changes in the nitrogen (N), phosphorus (P), and carbon (C) cycles have altered nutrient concentrations and the light climate in freshwaters globally. These factors affect phytoplankton (PPr) and bacterial production (BP), which constitute the basal energy resource for higher trophic levels in the pelagic zone of lakes. The light:nutrient hypothesis (LNH) predicts that although basal production decreases at low light, seston C:nutrient ratios also decrease, thus increasing food quality for crustacean zooplankton and potentially offsetting the negative effects of reduced food availability. We tested the LNH in an oligotrophic boreal lake by manipulating N, P, C and reducing light, and measuring PPr, BP, seston C:nutrient ratios and zooplankton biomass in 32 mesocosms. Low light strongly reduced zooplankton biomass in contrast to LNH predictions. PPr did not decrease with low light as predicted by the LNH, however, the phytoplankton community shifted towards low light adapted, but potentially less edible phytoplankton species, such as colony forming Dinobryon (Chrysophyta) and gymnoid (Dinoflagellata) taxa, which were negatively correlated with zooplankton biomass. Seston C:nutrient ratios did not decrease with reduced light, possibly due to the high abundance of mixotrophic phytoplankton across treatments. BP decreased with low light and correlations between BP, bacterial biomass, ciliates and zooplankton suggest that bacteria may be coupled with zooplankton biomass. Thus, the LNH was inadequate when predicting changes in crustacean zooplankton biomass in this typical oligotrophic boreal system, where Daphnia is rare and mixotrophic phytoplankton are abundant. Instead, alternative explanations, such as changes in phytoplankton edibility and energy transferred through the microbial food chain may need investigation to explain reduced zooplankton biomass in low light treatments
    corecore