37 research outputs found

    Do Young Neutron Stars Which Show Themselves As AXPs, SGRs and Radio Pulsars Accrete?

    Get PDF
    We examined the fall-back disk models, and in general accretion, proposed to explain the properties of anomalous X-ray pulsars (AXPs), soft gamma repeaters (SGRs), and radio pulsars (PSRs). We checked the possibility of some gas remaining around the neutron star after the supernova explosion. We also compared AXPs and SGRs with the X-ray pulsars in X-ray binaries. We conclude the existing models of accretion from a fall-back disk are insufficient to explain the nature of AXPs/SGRs, particularly the SGR bursts. We also discussed the proposed model of combination of magnetic dipole radiation and propeller torques in order to explain the evolution of radio pulsars on the P-\.{P} diagram. The predictions of this model contradict the observational data.Comment: 16 Pages, 1 Figur

    Magnetospheric particle acceleration and X-ray emission of pulsars

    Get PDF
    The available data on isolated X-ray pulsars, their wind nebulae, and the supernova remnants which are connected to some of these sources are analyzed. It is shown that electric fields of neutron stars tear off charged particles from the surface of neutron star and trigger the acceleration of particles. The charged particles are accelerated mainly in the field of magneto-dipole radiation wave. Power and energy spectra of the charged particles depend on the strength of the magneto-dipole radiation. Therefore, the X-ray radiation is strongly dependent on the rate of rotational energy loss and weakly dependent on the electric field intensity. Coulomb interaction between the charged particles is the main factor for the energy loss and the X-ray spectra of the charged particles.Comment: minor correction on table format, 20 pages (4 figures, 1 table), submitted to International Journal of Modern Physics

    Influences of neutron star parameters on evolutions of different types of pulsar; evolutions of anomalous X-ray pulsars, soft gamma repeaters and dim isolated thermal neutron stars on the P-\.{P} diagram

    Full text link
    Influences of the mass, moment of inertia, rotation, absence of stability in the atmosphere and some other parameters of neutron stars on the evolution of pulsars are examined. It is shown that the locations and evolutions of soft gamma repeaters, anomalous X-ray pulsars and other types of pulsar on the period versus period derivative diagram can be explained adopting values of B<1014<10^{14} G for these objects. This approach gives the possibility to explain many properties of different types of pulsar.Comment: 18 pages, 1 figur

    Effects of the background radiation on radio pulsar and supernova remnant searches and the birth rates of these objects

    Full text link
    In different directions of the Galaxy the Galactic background radio radiation and radiation of complex star formation regions which include large number of OB associations have different influences on radio pulsar (PSR) and supernova remnant (SNR) searches. In this work we analyse the effects of these background radiations on the observations of PSRs at 1400 MHz and SNRs at 1000 MHz. In the interval l=0o^o±60o\pm60^o the PSRs with flux F1400_{1400}>>0.2 mJy and the SNRs with surface brightness ÎŁ\Sigma>10−21>10^{-21} Wm−2^{-2}Hz−1^{-1}sr−1^{-1} are observable for all values of l and b. All the SNRs with ÎŁ\Sigma>3×10−22>3\times10^{-22} Wm−2^{-2}Hz−1^{-1}sr−1^{-1} can be observed in the interval 60o^o<<l<300o<300^o. We have examined samples of PSRs and SNRs to estimate the birth rates of these objects in the region up to 3.2 kpc from the Sun and also in the Galaxy. The birth rate of PSRs is about one in 200 years and the birth rate of SNRs is about one in 65 years in our galaxy.Comment: revised versio

    Evidence of Compton cooling during an X-ray flare supports a neutron star nature of the compact object in 4U1700-37

    Get PDF
    Based on new Chandra X-ray telescope data, we present empirical evidence of plasma Compton cooling during a flare in the non pulsating massive X-ray binary 4U1700-37. This behaviour might be explained by quasispherical accretion onto a slowly rotating magnetised neutron star. In quiescence, the neutron star in 4U1700-37 is surrounded by a hot radiatively cooling shell. Its presence is supported by the detection of mHz quasi periodic oscillations likely produced by its convection cells. The high plasma temperature and the relatively low X-ray luminosity observed during the quiescence, point to a small emitting area about 1 km, compatible with a hot spot on a NS surface. The sudden transition from a radiative to a significantly more efficient Compton cooling regime triggers an episode of enhanced accretion resulting in a flare. During the flare, the plasma temperature drops quickly. The predicted luminosity for such transitions, Lx = 3 x 10^35 erg s-1, is very close to the luminosity of 4U1700-37 during quiescence. The transition may be caused by the accretion of a clump in the stellar wind of the donor star. Thus, a magnetised NS nature of the compact object is strongly favoured.Comment: Accepted for publication in MNRA

    The origin of the runaway high-mass X-ray binary HD153919/4U1700-37

    Get PDF
    Based on its Hipparcos proper motion, we propose that the high-mass X-ray binary HD153919/4U1700-37 originates in the OB association Sco OB1. At a distance of 1.9 kpc the space velocity of 4U1700-37 with respect to Sco OB1 is 75 km/s. This runaway velocity indicates that the progenitor of the compact X-ray source lost about 7 Msun during the (assumed symmetric) supernova explosion. The system's kinematical age is about 2 +/- 0.5 million years which marks the date of the supernova explosion forming the compact object. The present age of Sco OB1 is <8 Myr; its suggested core, NGC 6231, seems to be somewhat younger (~5 Myr). If HD153919/4U1700-37 was born as a member of Sco OB1, this implies that the initially most massive star in the system terminated its evolution within 30 Msun. With these parameters the evolution of the binary system can be constrained.Comment: 6 pages, latex, 3 embedded ps figures, to appear in A&

    XMM-Newton X-ray spectroscopy of the high-mass X-ray binary 4U1700-37 at low flux

    Get PDF
    We present results of a monitoring campaign of the high-mass X-ray binary system 4U 1700-37/HD 153919, carried out with XMM-Newton in February 2001. The system was observed at four orbital phase intervals, covering 37% of one 3.41-day orbit. The lightcurve includes strong flares, commonly observed in this source. We focus on three epochs in which the data are not affected by photon pile up: the eclipse, the eclipse egress and a low-flux interval in the lightcurve around orbital phase phi ~0.25. The high-energy part of the continuum is modelled as a direct plus a scattered component, each represented by a power law with identical photon index (alpha ~1.4), but with different absorption columns. We show that during the low-flux interval the continuum is strongly reduced, probably due to a reduction of the accretion rate onto the compact object. A soft excess is detected in all spectra, consistent with either another continuum component originating in the outskirts of the system or a blend of emission lines. Many fluorescence emission lines from near-neutral species and discrete recombination lines from He- and H-like species are detected during eclipse and egress. The detection of recombination lines during eclipse indicates the presence of an extended ionised region surrounding the compact object. The observed increase in strength of some emission lines corresponding to higher values of the ionisation parameter xi further substantiates this conclusion.Comment: 15 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    The Relation Between the Surface Brightness and the Diameter for Galactic Supernova Remnants

    Full text link
    In this work, we have constructed a relation between the surface brightness (ÎŁ\Sigma) and diameter (D) of Galactic C- and S-type supernova remnants (SNRs). In order to calibrate the ÎŁ\Sigma-D dependence, we have carefully examined some intrinsic (e.g. explosion energy) and extrinsic (e.g. density of the ambient medium) properties of the remnants and, taking into account also the distance values given in the literature, we have adopted distances for some of the SNRs which have relatively more reliable distance values. These calibrator SNRs are all C- and S-type SNRs, i.e. F-type SNRs (and S-type SNR Cas A which has an exceptionally high surface brightness) are excluded. The Sigma-D relation has 2 slopes with a turning point at D=36.5 pc: ÎŁ\Sigma(at 1 GHz)=8.4−6.3+19.5^{+19.5}_{-6.3}×10−12\times10^{-12} D−5.99−0.33+0.38^{{-5.99}^{+0.38}_{-0.33}} Wm−2^{-2}Hz−1^{-1}ster−1^{-1} (for ÎŁ\Sigma≀3.7×10−21\le3.7\times10^{-21} Wm−2^{-2}Hz−1^{-1}ster−1^{-1} and D≄\ge36.5 pc) and ÎŁ\Sigma(at 1 GHz)=2.7−1.4+2.1^{+2.1}_{-1.4}×\times 10−17^{-17} D−2.47−0.16+0.20^{{-2.47}^{+0.20}_{-0.16}} Wm−2^{-2}Hz−1^{-1}ster−1^{-1} (for ÎŁ\Sigma>3.7×10−21>3.7\times10^{-21} Wm−2^{-2}Hz−1^{-1}ster−1^{-1} and D<<36.5 pc). We discussed the theoretical basis for the ÎŁ\Sigma-D dependence and particularly the reasons for the change in slope of the relation were stated. Added to this, we have shown the dependence between the radio luminosity and the diameter which seems to have a slope close to zero up to about D=36.5 pc. We have also adopted distance and diameter values for all of the observed Galactic SNRs by examining all the available distance values presented in the literature together with the distances found from our ÎŁ\Sigma-D relation.Comment: 45 pages, 2 figures, accepted for publication in Astronomical and Astrophysical Transaction
    corecore