13 research outputs found

    South Atlantic continental margins of Africa: a comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins

    Full text link
    The comparative review of 2 representative segments of Africa continental margin: the equatorial western Africa and the SW Africa margins, helps in analysing the main controlling factors on their development. Early Cretaceous active rifting S of the Walvis Ridge resulted in the formation of the SW Africa volcanic margin. The non-volcanic rifting N of the Walvis ridge, led to the formation of the equatorial western Africa margin, with thick and extensive, synrift basins. Regressive erosion of SW Africa prominent shoulder uplift accounts for high clastic sedimentation rate in Late Cretaceous - Eocene, while dominant carbonate production on equatorial western Africa shelf suggests little erosion of a low hinterland. The early Oligocene climate change had contrasted response in both margins. Emplacement of the Congo deep-sea fan reflects increased erosion in equatorial Africa, under the influence of wet climate, whereas establishment of an arid climate over SW Africa induced a drastic decrease of denudation, and thus reduced sedimentation on the margin. Neogene emplacement of the African superswell beneath S. Africa renewed onshore uplift on both margins, but it accelerated erosion only in the Congo catchment, due to wetter climate. Neogene high sedimentation rate reactivated gravitational tectonics that had remained quiescent since late Cretaceous

    Colorado Basin 3D structure and evolution, Argentine passive margin

    No full text
    International audienceThis 3D structural model of the Colorado Basin provides new insights into the crustal geometry of the basin and its evolution in relation with the Argentine passive margin. Three NW-SE segments (oblique to the N30°E-trending margin) structure the basin. The oldest infill is generally thought to be coeval with the rifting of the South Atlantic margins in Late Jurassic-Early Cretaceous. This coeval development of the Colorado Basin and of the passive margin is still under debate and gives rise to several hypotheses that we investigate in the light of our observations. We propose that reactivation of inherited structures is predominant in the evolution of the Colorado Basin: (1) the Western segment follows the continental continuation of the Colorado transfer zone; (2) the Central segment consists in the continental continuation of the Tona deformation zone; (3) the Eastern segment is superimposed over the Palaeozoic Claromecó Basin. In addition to the 3 segments, the Central High, separating the Central segment to the Eastern segment, corresponds to the Palaeozoic Sierras Australes Fold Belt. The direction of extension responsible for the South Atlantic opening cannot explain the syn-rift infill and thinning of the basin. The structural analysis shows two phases of syn-rift deformation with different directions. Thus, we suggest that the Colorado Basin and the South Atlantic margin are not coeval but that a first extensional event, probably oblique, predates the extension responsible for the South Atlantic opening. This event is then followed by the formation of the N30°-trending distal margin and the reactivation of Palaeozoic N70°-trending faults occurs under the NW-SE opening of the South Atlantic. This two-phase evolution is consistent with the fault chronology and the two directions of thinned crust observed in the distal margin

    Hydrocarbon leakage through focused fluid flow systems in continental margins (preface)

    No full text
    Transport of liquid and gaseous hydrocarbons through focused fluid flow systems is a widespread process in continental margins and sedimentary basins, which is gaining increased attention in the assessment of geohazards, environment conservation, and securing fossil energy resources. Studying the abundance, distribution and drivers for this process is crucial for understanding its role in 1) the dynamics of gas hydrate accumulation and destabilization, 2) submarine slope stability and related tsunamis, 3) the plethora of chemosynthetic benthic ecosystems that develop in deep seep sites, and 4) the input of greenhouse gases (e.g. methane) into the ocean/atmosphere system, which may influence the atmospheric carbon budget and Earth's paleo- and present climate.New ocean exploration tools provide ever more data and improve our understanding of these systems. However, the subject still suffers from a lack of interdisciplinary knowledge dissemination. The ongoing international debate about the timing and the processes that control fluid expulsion in sedimentary basins is fuelled by their implications for structural and petroleum geology. Because fluids expelled at cold seeps originate at depth they represent open windows into the underlying petroleum systems and are valuable indicators for the reservoir systems. They may also help in deciphering past and predicting future climate change because worldwide release of large amounts of fluids may have an impact on the chemistry of the ocean and atmosphere

    Evidence of a large upper-Cretaceous depocentre across the Continent-Ocean boundary of the Congo-Angola basin. Implications for palaeo-drainage and potential ultra-deep source rocks

    No full text
    International audienceThe analysis of 2D deep-seismic-reflection profiles across the slope and abyssal plain of the Angola oceanic basin reveals the existence of a significant and formerly unknown depocentre beneath the giant Cenozoic Congo deep-sea fan, between 7000 m and 9000 m depth, deposited directly onto the Aptian oceanic crust. The unit, which is up to 2.5 km thick and extends for more than 200 km basinwards of the Continent-Ocean boundary, is probably aged Albian-Turonian. Its radial fan-shaped depocentre is centred on the present-day Congo River outlet and contains at least 0.2 Mio km(3) of sediments. These observations and the results from flexural modelling indicate that (1) the location of the Congo River's outlet has remained fairly stable since the Late Cretaceous, and (2) the basal unit was indeed sourced by a palaeo-Congo River probably located nearby the present-day one. Thus, the Atlantic sedimentary system related to the exoreism of the Congo River is much older than previously thought. Thermal modelling indicates that the maturation history of this upper-Cretaceous deposits is highly influenced by the interaction between the initial high heat flow of the young oceanic crust and further increase in sediment supply due to the progradation of the overlying Tertiary deep-sea fan during the Miocene. Hence, despite low present-day heat-flow values, should the unit have source rock potential, its basal section may be currently generating hydrocarbons.;All in all, the results from our models also suggest that the interplay between an initially high heat flow and the further high sediment supply in areas of major river input, may be a key factor for the thermal maturation of potential source rocks deposited onto a present-day "cold" oceanic crust

    Geochemistry and kinetic models od Cretaceous samples

    No full text
    The source rock potential of Cretaceous organic rich whole rock samples from deep sea drilling project (DSDP) wells offshore southwestern Africa was investigated using bulk and quantitative pyrolysis techniques. The sample material was taken from organic rich intervals of Aptian, Albian and Turonian aged core samples from DSDP site 364 offshore Angola, DSDP well 530A north of the Walvis Ridge offshore Namibia, and DSDP well 361 offshore South Africa. The analytical program included TOC, Rock-Eval, pyrolysis GC, bulk kinetics and micro-scale sealed vessel pyrolysis (MSSV) experiments. The results were used to determine differences in the source rock petroleum type organofacies, petroleum composition, gas/oil ratio (GOR) and pressure-volume-temperature (PVT) behavior of hydrocarbons generated from these black shales for petroleum system modeling purposes. The investigated Aptian and Albian organic rich shales proved to contain excellent quality marine kerogens. The highest source rock potential was identified in sapropelic shales in DSDP well 364, containing very homogeneous Type II and organic sulfur rich Type IIS kerogen. They generate P-N-A low wax oils and low GOR sulfur rich oils, whereas Type III kerogen rich silty sandstones of DSDP well 361 show a potential for gas/condensate generation. Bulk kinetic experiments on these samples indicate that the organic sulfur contents influence kerogen transformation rates, Type IIS kerogen being the least stable. South of the Walvis Ridge, the Turonian contains predominantly a Type III kerogen. North of the Walvis Ridge, the Turonian black shales contain Type II kerogen and have the potential to generate P-N-A low and high wax oils, the latter with a high GOR at high maturity. Our results provide the first compositional kinetic description of Cretaceous organic rich black shales, and demonstrate the excellent source rock potential, especially of the Aptian-aged source rock, that has been recognized in a number of the South Atlantic offshore basins

    Distribution and origin of natural gas leakage in the Colorado Basin, offshore Argentina Margin, South America: seismic interpretation and 3D basin modelling

    No full text
    The detailed analysis of a dense 2D seismic reflection dataset and data from 8 exploration wells, allowed us to identify, map out and characterize possible indications of past and present-day hydrocarbon leakage (i.e. gas chimneys, gas pockets, and seafloor mounds and pockmarks) on the continental shelf and slope of the Colorado Basin, offshore Argentina, where Permian, Jurassic and Early Cretaceous source rocks are potentially present and may be currently mature. Identified gas leakage features, developed both in the syn-rift and post-rift successions, were also analysed in relation to the structural the stratigraphic elements of the basin. A family of seabed pockmarks, located close to an array of submarine channels, was identified on the distal slope of the basin. These pockmarks are overlying a series of sub-vertical to vertical seismic chimneys in the subsurface. A calibrated basin-wide 3D petroleum system model comprising generation and migration of hydrocarbons was carried out and compared with the observations from the seismic analysis. Preliminary results from this model indicate that although synrift and early Cretaceous source rock (SR) intervals may be depleted in the central areas of the basin, an active kitchen from the Aptian SR may be present below the slope areas. Hydrocarbon migration pathways predicted by the 3D model (Hybrid method) coincide with the interpreted seismic chimneys underlying the observed seabed slope pockmarks. Hence, our results indicate that thermogenic gas may be currently generated in the distal slope of the basin from mature early post-rift source rocks within the Early Cretaceous (Aptian) sequences and migrates vertically, due to seal failure, through the stratigraphic column. This migrating thermogenic gas is feeding the seafloor pockmarks identified in the distal slope of the basin, although up-dip lateral migration along stratigraphic layers to the more proximal slope areas cannot be ruled out. The present work represents the first published study integrating detailed seismic analysis and 3D basin modelling linking observed gas-leakage indicators and associated seepage pathways, to their relative abundance, distribution and feeding systems offshore Argentina's continental margin
    corecore