15 research outputs found

    Snail regulates BMP and TGFβ pathways to control the differentiation status of glioma-initiating cells

    Get PDF
    Glioblastoma multiforme is a brain malignancy characterized by high heterogeneity, invasiveness, and resistance to current therapies, attributes related to the occurrence of glioma stem cells (GSCs). Transforming growth factor β (TGFβ) promotes self-renewal and bone morphogenetic protein (BMP) induces differentiation of GSCs. BMP7 induces the transcription factor Snail to promote astrocytic differentiation in GSCs and suppress tumor growth in vivo. We demonstrate that Snail represses stemness in GSCs. Snail interacts with SMAD signaling mediators, generates a positive feedback loop of BMP signaling and transcriptionally represses the TGFB1 gene, decreasing TGFβ1 signaling activity. Exogenous TGFβ1 counteracts Snail function in vitro, and in vivo promotes proliferation and re-expression of Nestin, confirming the importance of TGFB1 gene repression by Snail. In conclusion, novel insight highlights mechanisms whereby Snail differentially regulates the activity of the opposing BMP and TGFβ pathways, thus promoting an astrocytic fate switch and repressing stemness in GSCs

    Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells

    No full text
    Zinc finger E-box binding homeobox 1 (ZEB1) is a transcriptional regulator involved in embryonic development and cancer progression. ZEB1 induces epithelial-mesenchymal transition (EMT). Triple-negative human breast cancers express high ZEB1 mRNA levels and exhibit features of EMT. In the human triple-negative breast cancer cell model Hs578T, ZEB1 associates with almost 2,000 genes, representing many cellular functions, including cell polarity regulation (DLG2 and FAT3). By introducing a CRISPR-Cas9-mediated 30bp deletion into the ZEB1 second exon, we observed reduced migratory and anchorage-independent growth capacity of these tumor cells. Transcriptomic analysis of control and ZEB1 knockout cells, revealed 1,372 differentially expressed genes. The TIMP metallopeptidase inhibitor 3 and the teneurin transmembrane protein 2 genes showed increased expression upon loss of ZEB1, possibly mediating pro-tumorigenic actions of ZEB1. This work provides a resource for regulators of cancer progression that function under the transcriptional control of ZEB1. The data confirm that removing a single EMT transcription factor, such as ZEB1, is not sufficient for reverting the triple-negative mesenchymal breast cancer cells into more differentiated, epithelial-like clones, but can reduce tumorigenic potential, suggesting that not all pro-tumorigenic actions of ZEB1 are linked to the EMT

    Genomewide binding of transcription factor Snail1 in triple-negative breast cancer cells

    No full text
    Transcriptional regulation mediated by the zinc finger protein Snail1 controls early embryogenesis. By binding to the epithelial tumor suppressor CDH1 gene, Snail1 initiates the epithelial-mesenchymal transition (EMT). The EMT generates stem-like cells and promotes invasiveness during cancer progression. Accordingly, Snail1 mRNA and protein is abundantly expressed in triple-negative breast cancers with enhanced metastatic potential and phenotypic signs of the EMT. Such high endogenous Snail1 protein levels permit quantitative chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. Snail1 associated with 185 genes at cis regulatory regions in the Hs578T triple-negative breast cancer cell model. These genes include morphogenetic regulators and signaling components that control polarized differentiation. Using the CRISPR/Cas9 system in Hs578T cells, a double deletion of 10bp each was engineered into the first exon and into the second exon-intron junction of Snail1, suppressing Snail1 expression and causing misregulation of several hundred genes. Specific attention to regulators of chromatin organization provides a possible link to new phenotypes uncovered by the Snail1 loss-of-function mutation. On the other hand, genetic inactivation of Snail1 was not sufficient to establish a full epithelial transition to these tumor cells. Thus, Snail1 contributes to the malignant phenotype of breast cancer cells via diverse new mechanisms

    LXR alpha limits TGF beta-dependent hepatocellular carcinoma associated fibroblast differentiation

    No full text
    Transforming growth factor beta (TGF beta) is deposited in the extracellular space of diverse tissues. Resident fibroblasts respond to TGF beta and undergo myofibroblastic differentiation during tissue wound healing and cancer progression. Cancer-associated fibroblasts (CAFs) communicate with tumor cells during cancer progression, under the guidance of TGF beta signaling. We report that agonist-activated liver X receptors (LXR) limit the expression of key components of myofibroblast differentiation, including the a-smooth muscle actin (alpha SMA) gene in liver cancer cells. CAFs derived from hepatocellular carcinoma (HCC) express high aSMA and low LXR alpha levels, whereas hepatocarcinoma cells exhibit an inverse expression pattern. All hepatoma cells analyzed responded to the LXR alpha agonist T0901317 by inducing fatty acid synthase (FASN) expression. On the other hand, T0901317 antagonized TGF beta-induced fibroblastic marker responses, such as fibronectin and calponin, in a subset of hepatoma cells and all CAFs analyzed. Mechanistically, LXR alpha antagonized TGF beta signaling at the transcriptional level. Smad3 and LXR alpha were recruited to adjacent DNA motifs of the ACTA2 promoter. Upon cloning the human ACTA2 promoter, we confirmed its transcriptional induction by TGF beta stimulation, and LXR alpha overexpression repressed the promoter activity. Hepatosphere formation by HCC cells was enhanced upon co-culturing with CAFs. T0901317 suppressed the positive effects exerted on hepatosphere growth by CAFs. Taken together, the data suggest that LXR alpha agonists limit TGF beta-dependent CAF differentiation, potentially limiting primary HCC growth

    The TGFB2-AS1 lncRNA Regulates TGF-beta Signaling by Modulating Corepressor Activity

    No full text
    Molecular processes involving lncRNAs regulate cell function. By applying transcriptomics, we identify lncRNAs whose expression is regulated by transforming growth factor beta (TGF-beta). Upon silencing individual lncRNAs, we identify several that regulate TGF-beta signaling. Among these lncRNAs, TGFB2-antisense RNA1 (TGFB2-AS1) is induced by TGF-beta through Smad and protein kinase pathways and resides in the nucleus. Depleting TGFB2-AS1 enhances TGF-beta/Smad-mediated transcription and expression of hallmark TGF-beta-target genes. Increased dose of TGFB2-AS1 reduces expression of these genes, attenuates TGF-beta-induced cell growth arrest, and alters BMP and Wnt pathway gene profiles. Mechanistically, TGFB2-AS1, mainly via its 3' terminal region, binds to the EED adaptor of the Polycomb repressor complex 2 (PRC2), promoting repressive histone H3K27me(3) modifications at TGF-beta-target gene promoters. Silencing EED or inhibiting PRC2 methylation activity partially rescues TGFB2-AS1-mediated gene repression. Thus, the TGF-beta-induced TGFB2-AS1 lncRNA exerts inhibitory functions on TGF-beta/BMP signaling output, supporting auto-regulatory negative feedback that balances TGF-beta/BMP-mediated responses

    NOX4 regulates TGF beta-induced proliferation and self-renewal in glioblastoma stem cells

    No full text
    Y Glioblastoma (GBM) is the most aggressive and common glioma subtype, with a median survival of 15 months after diagnosis. Current treatments have limited therapeutic efficacy; thus, more effective approaches are needed. The glioblastoma tumoural mass is characterised by a small cellular subpopulation - glioblastoma stem cells (GSCs) - that has been held responsible for glioblastoma initiation, cell invasion, proliferation, relapse and resistance to chemo- and radiotherapy. Targeted therapies against GSCs are crucial, as is understanding the molecular mechanisms that govern the GSCs. Transforming growth factor beta (TGF beta) signalling and reactive oxygen species (ROS) production are known to govern and regulate cancer stem cell biology. Among the differentially expressed genes regulated by TGF beta in a transcriptomic analysis of two different patient-derived GSCs, we found NADPH oxidase 4 (NOX4) as one of the top upregulated genes. Interestingly, when patient tissues were analysed, NOX4 expression was found to be higher in GSCs versus differentiated cells. A functional analysis of the role of NOX4 downstream of TGF beta in several patient-derived GSCs showed that TGF beta does indeed induce NOX4 expression and increases ROS production in a NOX4-dependent manner. NOX4 downstream of TGF beta regulates GSC proliferation, and NOX4 expression is necessary for TGF beta-induced expression of stem cell markers and of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), which in turn controls the cell's antioxidant and metabolic responses. Interestingly, overexpression of NOX4 recapitulates the effects induced by TGF beta in GSCs: enhanced proliferation, stemness and NRF2 expression. In conclusion, this work functionally establishes NOX4 as a key mediator of GSC biology

    The liver kinase B1 supports mammary epithelial morphogenesis by inhibiting critical factors that mediate epithelial-mesenchymal transition

    No full text
    The liver kinase B1 (LKB1) controls cellular metabolism and cell polarity across species. We previously established a mechanism for negative regulation of transforming growth factor β (TGFβ) signaling by LKB1. The impact of this mechanism in the context of epithelial polarity and morphogenesis remains unknown. After demonstrating that human mammary tissue expresses robust LKB1 protein levels, whereas invasive breast cancer exhibits significantly reduced LKB1 levels, we focused on mammary morphogenesis studies in three dimensional (3D) acinar organoids. CRISPR/Cas9-introduced loss-of-function mutations of STK11 (LKB1) led to profound defects in the formation of 3D organoids, resulting in amorphous outgrowth and loss of rotation of young organoids embedded in matrigel. This defect was associated with an enhanced signaling by TGFβ, including TGFβ auto-induction and induction of transcription factors that mediate epithelial-mesenchymal transition (EMT). Protein marker analysis confirmed a more efficient EMT response to TGFβ signaling in LKB1 knockout cells. Accordingly, chemical inhibition of the TGFβ type I receptor kinase largely restored the morphogenetic defect of LKB1 knockout cells. Similarly, chemical inhibition of the bone morphogenetic protein pathway or the TANK-binding kinase 1, or genetic silencing of the EMT factor SNAI1, partially restored the LKB1 knockout defect. Thus, LKB1 sustains mammary epithelial morphogenesis by limiting pathways that promote EMT. The observed downregulation of LKB1 expression in breast cancer is therefore predicted to associate with enhanced EMT induced by SNAI1 and TGFβ family members

    The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling

    No full text
    The protein kinase LKB1 regulates cell metabolism and growth and is implicated in intestinal and lung cancer. Bone morphogenetic protein (BMP) signaling regulates cell differentiation during development and tissue homeostasis. We demonstrate that LKB1 physically interacts with BMP type I receptors and requires Smad7 to promote downregulation of the receptor. Accordingly, LKB1 suppresses BMP-induced osteoblast differentiation and affects BMP signaling in Drosophila wing longitudinal vein morphogenesis. LKB1 protein expression and Smad1 phosphorylation analysis in a cohort of non-small cell lung cancer patients demonstrated a negative correlation predominantly in a subset enriched in adenocarcinomas. Lung cancer patient data analysis indicated strong correlation between LKB1 loss-of-function mutations and high BMP2 expression, and these two events further correlated with expression of a gene subset functionally linked to apoptosis and migration. This new mechanism of BMP receptor regulation by LKB1 has ramifications in physiological organogenesis and disease

    The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling

    No full text
    The protein kinase LKB1 regulates cell metabolism and growth and is implicated in intestinal and lung cancer. Bone morphogenetic protein (BMP) signaling regulates cell differentiation during development and tissue homeostasis. We demonstrate that LKB1 physically interacts with BMP type I receptors and requires Smad7 to promote downregulation of the receptor. Accordingly, LKB1 suppresses BMP-induced osteoblast differentiation and affects BMP signaling in Drosophila wing longitudinal vein morphogenesis. LKB1 protein expression and Smad1 phosphorylation analysis in a cohort of non-small cell lung cancer patients demonstrated a negative correlation predominantly in a subset enriched in adenocarcinomas. Lung cancer patient data analysis indicated strong correlation between LKB1 loss-of-function mutations and high BMP2 expression, and these two events further correlated with expression of a gene subset functionally linked to apoptosis and migration. This new mechanism of BMP receptor regulation by LKB1 has ramifications in physiological organogenesis and disease
    corecore