64 research outputs found
Respective Contributions of Single and Compound Granule Fusion to Secretion by Activated Platelets
Although granule secretion is pivotal in many platelet responses, the fusion routes of α and δ granule release remain uncertain. We used a 3D reconstruction approach based on electron microscopy to visualize the spatial organization of granules in unstimulated and activated platelets. Two modes of exocytosis were identified: a single mode that leads to release of the contents of individual granules and a compound mode that leads to the formation of granule-to-granule fusion, resulting in the formation of large multigranular compartments. Both modes occur during the course of platelet secretion. Single fusion events are more visible at lower levels of stimulation and early time points, whereas large multigranular compartments are present at higher levels of agonist and at later time points. Although α granules released their contents through both modes of exocytosis, δ granules underwent only single exocytosis. To define the underlying molecular mechanisms, we examined platelets from vesicle-associated membrane protein 8 (VAMP8) null mice. After weak stimulation, compound exocytosis was abolished and single exocytosis decreased in VAMP8 null platelets. Higher concentrations of thrombin bypassed the VAMP8 requirement, indicating that this isoform is a key but not a required factor for single and/or compound exocytosis. Concerning the biological relevance of our findings, compound exocytosis was observed in thrombi formed after severe laser injury of the vessel wall with thrombin generation. After superficial injury without thrombin generation, no multigranular compartments were detected. Our studies suggest that platelets use both modes of membrane fusion to control the extent of agonist-induced exocytosis
Cytoskeletal-based mechanisms differently regulate <i>in vivo</i> and <i>in vitro</i> proplatelet formation
Platelets are produced by bone marrow megakaryocytes through cytoplasmic protrusions, named native proplatelets (nPPT), into blood vessels. Proplatelets also refer to protrusions observed in megakaryocyte culture (cPPT) that are morphologically different. Contrary to cPPT, the mechanisms of nPPT formation are poorly understood. We show here in living mice that nPPT elongation is in equilibrium between protrusive and retraction forces mediated by myosin-IIA. We also found, using WT and β1-tubulin-deficient mice, that microtubule behavior differs between cPPT and nPPT, being absolutely required in vitro, while less critical in vivo. Remarkably, microtubule depolymerization in myosin-deficient mice did not affect nPPT elongation. We then calculated that blood Stokes'forces may be sufficient to promote nPPT extension, independently of myosin and microtubules. Together, we propose a new mechanism for nPPT extension that might explain contradictions between severely affected cPPT production and moderate platelet count defects in some patients and animal models
Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL
Microenvironment and activation signals likely imprint heterogeneity in the lymphatic endothelial cell (LEC) population. Particularly LECs of secondary lymphoid organs are exposed to different cell types and immune stimuli. However, our understanding of the nature of LEC activation signals and their cell source within the secondary lymphoid organ in the steady state remains incomplete. Here we show that integrin alpha 2b (ITGA2b), known to be carried by platelets, megakaryocytes and hematopoietic progenitors, is expressed by a lymph node subset of LECs, residing in medullary, cortical and subcapsular sinuses. In the subcapsular sinus, the floor but not the ceiling layer expresses the integrin, being excluded from ACKR4+LECs but overlapping with MAdCAM-1 expression. ITGA2b expression increases in response to immunization, raising the possibility that heterogeneous ITGA2b levels reflect variation in exposure to activation signals. We show that alterations of the level of receptor activator of NF-κB ligand (RANKL), by overexpression, neutralization or deletion from stromal marginal reticular cells, affected the proportion of ITGA2b+LECs. Lymph node LECs but not peripheral LECs express RANK. In addition, we found that lymphotoxin-β receptor signaling likewise regulated the proportion of ITGA2b+LECs. These findings demonstrate that stromal reticular cells activate LECs via RANKL and support the action of hematopoietic cell-derived lymphotoxin
Mécanismes cellulaires et moléculaires impliqués dans le passage des fragments mégacaryocytaires au travers des sinusoïdes médullaires
Sciences de la vie et de la sant
Platelet δ-Storage Pool Disease: An Update
Platelet dense-granules are small organelles specific to the platelet lineage that contain small molecules (calcium, adenyl nucleotides, serotonin) and are essential for the activation of blood platelets prior to their aggregation in the event of a vascular injury. Delta-storage pool diseases (δ-SPDs) are platelet pathologies leading to hemorrhagic syndromes of variable severity and related to a qualitative (content) or quantitative (numerical) deficiency in dense-granules. These pathologies appear in a syndromic or non-syndromic form. The syndromic forms (Chediak–Higashi disease, Hermansky–Pudlak syndromes), whose causative genes are known, associate immune deficiencies and/or oculocutaneous albinism with a platelet function disorder (PFD). The non-syndromic forms correspond to an isolated PFD, but the genes responsible for the pathology are not yet known. The diagnosis of these pathologies is complex and poorly standardized. It is based on orientation tests performed by light transmission aggregometry or flow cytometry, which are supplemented by complementary tests based on the quantification of platelet dense-granules by electron microscopy using the whole platelet mount technique and the direct determination of granule contents (ADP/ATP and serotonin). The objective of this review is to present the state of our knowledge concerning platelet dense-granules and the tools available for the diagnosis of different forms of δ-SPD
Use of electron microscopy to study megakaryocytes
Electron microscopy (EM) has a long history in megakaryocyte (MK) cellular biology. This chapter shows how the electron microscope, since its first appearance almost 90 years ago, has occupied center stage in the studies of MK morphology and function. It describes some of the more productive EM techniques that have shaped our understanding of the physiology of thrombopoiesis. These include the standard transmission and scanning EM techniques as well as the new imaging methods, correlative microscopy and volume EM which provide information on the 3D organization of MKs on different scales: single organelles, whole cells and tissues. For each technique, we list the advantages and limitations, the resolution that can be achieved, the technical difficulties and the applications in MK biology
Hirudin and heparin enable efficient megakaryocyte differentiation of mouse bone marrow progenitors.
International audienceHematopoietic progenitors from murine fetal liver efficiently differentiate in culture into proplatelet-producing megakaryocytes and have proved valuable to study platelet biogenesis. In contrast, megakaryocyte maturation is far less efficient in cultured bone marrow progenitors, which hampers studies in adult animals. It is shown here that addition of hirudin to media containing thrombopoietin and serum yielded a proportion of proplatelet-forming megakaryocytes similar to that in fetal liver cultures (approximately 50%) with well developed extensions and increased the release of platelet particles in the media. The effect of hirudin was maximal at 100U/ml, and was more pronounced when it was added in the early stages of differentiation. Hirugen, which targets the thrombin anion binding exosite I, and argatroban, a selective active site blocker, also promoted proplatelet formation albeit less efficiently than hirudin. Heparin, an indirect thrombin blocker, and OTR1500, a stable heparin-like synthetic glycosaminoglycan generated proplatelets at levels comparable to hirudin. Heparin with low affinity for antithrombin was equally as effective as standard heparin, which indicates antithrombin independent effects. Use of hirudin and heparin compounds should lead to improved culture conditions and facilitate studies of platelet biogenesis in adult mice
Importance of environmental stiffness for megakaryocyte differentiation and proplatelet formation.
International audienc
Development of an efficient, ready to use, blood platelet-release device based on two new flow regime parameters: The periodic hydrodynamic loading and the shear stress accumulation.
International audienceIn vitro production of blood platelets for transfusion purposes is gaining interest. While platelet production is now possible on a laboratory scale, the challenge is to move towards industrial production. Attaining this goal calls for the development of platelet release devices capable of producing large quantities of platelets. To this end, we have developed a continuous-flow platelet release device composed of five spherical chambers each containing two calibrated cones placed in a staggered configuration. Following perfusion of proplatelet-bearing cultured megakaryocytes, the device achieves a high yield of about 100 bona-fide platelets/megakaryocyte, at a flow rate of ∼80 mL/min. Performances and operating conditions comply with the requirements of large-scale platelet production. Moreover, this device enabled an in-depth analysis of the flow regimes through Computational Fluid Dynamics (CFD). This revealed two new universal parameters to be taken into account for an optimal platelet release: i.e. a periodic hydrodynamic load and a sufficient accumulation of shear stress. An efficient 16 Pa.s shear stress accumulation is obtained in our system at a flow rate of 80 mL/min
- …