65 research outputs found

    Recognition of Characters from Streaming Videos

    Get PDF
    Non

    Colonization behaviour of arbuscular mycorrhizal fungi and phosphorus uptake pattern of mycorrhizal sensitive upland paddy using hydroponics culture

    Get PDF
    Three upland rice cultivars namely Vandana, Brown Gora and Kalinga collected from the Central Rainfed Upland Rice Research Station (CRURRS), Hazaribag, Jharkhand of the Central Rice Research Institute, are mycorrhiza sensitive genotypes. Their affinity towards mycorrhizal colonization varied. The cv. Kalinga had the highest colonization followed by Vandana and Brown Gora. Variation of arbuscular mycorrhizal fungi affinity of the rice genotypes might be due to the variable demands of phosphorus nutrition of the different genotypes. To justify these variable demands of phosphorus among these three cultivars of rice, four different doses of phosphorus (5, 10, 15 and 20 ppm) were imposed to them in a system of hydroponics. Overall, among the three cultivars, the highest uptake efficiency (34% at 30 days, 57% at 45 days, 68% at 60days and 70% at 75 days interval) throughout the growth period was noticed in the cv. Brown Gora, followed by Kalinga and Vandana. The physiological demands of phosphorus of these cultivars were finally estimated as the contribution of uptake phosphorus to the total dry matter production of the plants with respect to available phosphorus. The overall results of these estimations gave the highest value in cv. Kalinga followed by the cv. Vandana and Brown Gora. Therefore, the cultivars Brown Gora and Kalinga could be recommended for the cultivation of the vast upland rain-fed areas of the country for higher yield and increased phosphorus use efficiency which could ultimately contribute significantly to the food grain production of the country

    Current Developments in 3D Bioprinting for Tissue and Organ Regeneration–A Review

    Get PDF
    Thefield of Tissue engineering and regenerative medicine that work toward creatingfunctional tissue-constructs mimicking native tissue for repair and/or replacement ofdamaged tissues or whole organs have evolved rapidly over the past few decades.However, traditional tissue engineering approaches comprising of scaffolds, growthfactors and cells showed limited success in fabrication of complex 3D shapes andinvivoorgan regeneration leading to their non-feasibility for clinical applications from alogistical and economical viewpoint. In this regard, 3D bioprinting, which is an extendedapplication of additive manufacturing is now being explored for tissue engineering andregenerative medicine as it involves the top-down approach of building the complex tissuein a layer by layer fashion, thereby producing precise geometries due to controlled nature ofmatter deposition with the help of anatomically accurate 3D models of the tissue generatedby computer graphics. Here, we aim to provide a comprehensive review of the 3Dbioprinting technology along with associated 3D bioprinting strategies including ink-jetprinting, extrusion printing, stereolithography and laser assisted bioprinting techniques.We then focus on the applications of 3D bioprinting technology on construction of variousrepresentative tissue and organs, including skin, cardiac, bone and cartilage etc. Wefurther attempt to highlight the steps involved in each of those tissues/organs printing anddiscuss on the associated technological requirements based on the available reports fromrecent literature. Wefinally conclude with current challenges with 3D bioprintingtechnology along with potential solution for future technological advancement ofefficient and cost-effective 3D bioprinting methods

    An Implementation of Machine Learning Algorithm for Fake News Detection

    Get PDF
    Fake news is a growing concern in the age of social media, as it can spread rapidly and have serious consequences. To combat this issue, machine learning techniques have been used for fake news detection. In this study, we propose two models, LSTM and SVM, for fake news detection. The LSTM model is a deep learning algorithm that is particularly suited to sequential data such as text. It can capture long-term dependencies in the text and has shown promising results in natural language processing tasks. The SVM model, on the other hand, is a classical machine learning algorithm that has been widely used for classification tasks. To evaluate the performance of the proposed models, we conducted experiments on a dataset of news articles. Our results show that both models achieve high accuracy in detecting fake news. However, the LSTM model outperforms the SVM model with an accuracy of 94% compared to 89%. Furthermore, we conducted a feature importance analysis to determine the most important features for detecting fake news. The results show that the presence of certain words and phrases, such as "unverified" and "anonymous sources", are strong indicators of fake news. In conclusion, our study demonstrates the effectiveness of using machine learning techniques, particularly LSTM and SVM, for detecting fake news. This research can be applied to assist individuals and organizations in identifying and combating fake news in the digital age

    Major urological cancer surgery for patients is safe and surgical training should be encouraged during the COVID-19 pandemic : A multi-centre analysis of 30-day outcomes

    Get PDF
    Funding Information: Funding/Support and role of the sponsor: Wei Shen Tan is funded by the Urology Foundation . Publisher Copyright: © 2021 The Author(s) Copyright: Copyright 2021 Elsevier B.V., All rights reserved.COVID-19 has resulted in the deferral of major surgery for genitourinary (GU) cancers with the exception of cancers with a high risk of progression. We report outcomes for major GU cancer operations, namely radical prostatectomy (RP), radical cystectomy (RC), radical nephrectomy (RN), partial nephrectomy (PN), and nephroureterectomy performed at 13 major GU cancer centres across the UK between March 1 and May 5, 2020. A total of 598 such operations were performed. Four patients (0.7%) developed COVID-19 postoperatively. There was no COVID-19–related mortality at 30 d. A minimally invasive approach was used in 499 cases (83.4%). A total of 228 cases (38.1%) were described as training procedures. Training case status was not associated with a higher American Society of Anesthesiologists (ASA) score (p = 0.194) or hospital length of stay (LOS; p > 0.05 for all operation types). The risk of contracting COVID-19 was not associated with longer hospital LOS (p = 0.146), training case status (p = 0.588), higher ASA score (p = 0.295), or type of hospital site (p = 0.303). Our results suggest that major surgery for urological cancers remains safe and training should be encouraged during the ongoing COVID-19 pandemic provided appropriate countermeasures are taken. These real-life data are important for policy-makers and clinicians when counselling patients during the current pandemic. Patient summary: We collected outcome data for major operations for prostate, bladder, and kidney cancers during the COVID-19 pandemic. These surgeries remain safe and training should be encouraged during the ongoing pandemic provided appropriate countermeasures are taken. Our real-life results are important for policy-makers and clinicians when counselling patients during the COVID-19 pandemic.Peer reviewe

    A prospective study of the importance of enteric fever as a cause of non-malarial febrile illness in patients admitted to Chittagong Medical College Hospital, Bangladesh

    Get PDF
    BACKGROUND: Fever is a common cause of hospital admission in Bangladesh but causative agents, other than malaria, are not routinely investigated. Enteric fever is thought to be common. METHODS: Adults and children admitted to Chittagong Medical College Hospital with a temperature of ≥38.0 °C were investigated using a blood smear for malaria, a blood culture, real-time PCR to detect Salmonella Typhi, S. Paratyphi A and other pathogens in blood and CSF and an NS1 antigen dengue ELISA. RESULTS: We enrolled 300 febrile patients with a negative malaria smear between January and June 2012: 156 children (aged ≤15 years) and 144 adults with a median (interquartile range) age of 13 (5-31) years and median (IQR) illness duration before admission of five (2-8) days. Clinical enteric fever was diagnosed in 52 patients (17.3 %), lower respiratory tract infection in 48 (16.0 %), non-specific febrile illness in 48 (16.0 %), a CNS infection in 37 patients (12.3 %), urinary sepsis in 23 patients (7.7 %), an upper respiratory tract infection in 21 patients (7.0 %), and diarrhea or dysentery in 21 patients (7.0 %). Malaria was still suspected in seven patients despite a negative microscopy test. S. Typhi was detected in blood by culture or PCR in 34 (11.3 %) of patients. Of note Rickettsia typhi and Orientia tsutsugamushi were detected by PCR in two and one patient respectively. Twenty-nine (9 %) patients died during their hospital admission (15/160 (9.4 %) of children and 14/144 (9.7 %) adults). Two of 52 (3.8 %) patients with enteric fever, 5/48 (10.4 %) patients with lower respiratory tract infections, and 12/37 (32.4 %) patients with CNS infection died. CONCLUSION: Enteric fever was confirmed in 11.3 % of patients admitted to this hospital in Bangladesh with non-malaria fever. Lower respiratory tract and CNS infections were also common. CNS infections in this location merit more detailed study due to the high mortality

    Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
    corecore