351 research outputs found

    Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment available. An increasing number of genetic causes of ALS are being identified, but how these genetic defects lead to motor neuron degeneration and to which extent they affect common cellular pathways remains incompletely understood. To address these questions, we performed an interactomic analysis to identify binding partners of wild-type (WT) and ALS-associated mutant versions of ATXN2, C9orf72, FUS, OPTN, TDP-43 and UBQLN2 in neuronal cells. This analysis identified several known but also many novel binding partners of these proteins

    Mechanistic stochastic model of histone modification pattern formation

    Get PDF
    BACKGROUND: The activity of a single gene is influenced by the composition of the chromatin in which it is embedded. Nucleosome turnover, conformational dynamics, and covalent histone modifications each induce changes in the structure of chromatin and its affinity for regulatory proteins. The dynamics of histone modifications and the persistence of modification patterns for long periods are still largely unknown. RESULTS: In this study, we present a stochastic mathematical model that describes the molecular mechanisms of histone modification pattern formation along a single gene, with non-phenomenological, physical parameters. We find that diffusion and recruitment properties of histone modifying enzymes together with chromatin connectivity allow for a rich repertoire of stochastic histone modification dynamics and pattern formation. We demonstrate that histone modification patterns at a single gene can be established or removed within a few minutes through diffusion and weak recruitment mechanisms of histone modification spreading. Moreover, we show that strong synergism between diffusion and weak recruitment mechanisms leads to nearly irreversible transitions in histone modification patterns providing stable patterns. In the absence of chromatin connectivity spontaneous and dynamic histone modification boundaries can be formed that are highly unstable, and spontaneous fluctuations cause them to diffuse randomly. Chromatin connectivity destabilizes this synergistic system and introduces bistability, illustrating state switching between opposing modification states of the model gene. The observed bistable long-range and localized pattern formation are critical effectors of gene expression regulation. CONCLUSION: This study illustrates how the cooperative interactions between regulatory proteins and the chromatin state generate complex stochastic dynamics of gene expression regulation

    Advances in the management of juvenile idiopathic arthritis. The coming of age of biologic treatment

    Get PDF

    Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment available. An increasing number of genetic causes of ALS are being identified, but how these genetic defects lead to motor neuron degeneration and to which extent they affect common cellular pathways remains incompletely understood. To address these questions, we performed an interactomic analysis to identify binding partners of wild-type (WT) and ALS-associated mutant versions of ATXN2, C9orf72, FUS, OPTN, TDP-43 and UBQLN2 in neuronal cells. This analysis identified several known but also many novel binding partners of these proteins. Interactomes of WT and mutant ALS proteins were very similar except for OPTN and UBQLN2, in which mutations caused loss or gain of protein interactions. Several of the identified interactomes showed a high degree of overlap: shared binding partners of ATXN2, FUS and TDP-43 had roles in RNA metabolism; OPTN- and UBQLN2-interacting proteins were related to protein degradation and protein transport, and C9orf72 interactors function in mitochondria. To conf

    Advances in the management of juvenile idiopathic arthritis. The coming of age of biologic treatment

    Get PDF

    PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex

    Get PDF
    Tuberous sclerosis complex (TSC) is caused by inactivating mutations in either TSC1 or TSC2 and is characterized by uncontrolled mTORC1 activation. Drugs that reduce mTOR activity are only partially successful in the treatment of TSC, suggesting that mTOR-independent pathways play a role in disease development. Here, kinome profiles of wild-type and Tsc2-/- mouse embryonic fibroblasts (MEFs) were generated, revealing a prominent role for PAK2 in signal transduction downstream of TSC1/2. Further investigation showed that the effect of the TSC1/2 complex on PAK2 is mediated through RHEB, but is independent of mTOR and p21RAC. We also demonstrated that PAK2 over-activation is likely responsible for the migratory and cell cycle abnormalities observed in Tsc2-/- MEFs. Finally, we detected high levels of PAK2 activation in giant cells in the brains of TSC patients. These results show that PAK2 is a direct effector of TSC1-TSC2-RHEB signaling and a new target for rational drug therapy in TSC

    Advances in the management of juvenile idiopathic arthritis. The coming of age of biologic treatment

    Get PDF

    A survey of national and multi-national registries and cohort studies in juvenile idiopathic arthritis: Challenges and opportunities

    Get PDF
    Background: To characterize the existing national and multi-national registries and cohort studies in juvenile idiopathic arthritis (JIA) and identify differences as well as areas of potential future collaboration. Methods: We surveyed investigators from North America, Europe, and Australia about existing JIA cohort studies and registries. We excluded cross-sectional studies. We captured information about study design, duration, location, inclusion criteria, data elements and collection methods. Results: We received survey results from 18 studies, including 11 national and 7 multi-national studies representing 37 countries in total. Study designs included inception cohorts, prevalent disease cohorts, and new treatment cohorts (several of which contribute to pharmacosurveillance activities). Despite numerous differences, the data elements collected across the studies was quite similar, with most studies collecting at least 5 of the 6 American College of Rheumatology core set variables and the data needed to calculate the 3-variable clinical juvenile disease activity score. Most studies were collecting medication initiation and discontinuation dates and were attempting to capture serious adverse events. Conclusion: There is a wide-range of large, ongoing JIA registries and cohort studies around the world. Our survey results indicate significant potential for future collaborative work using data from different studies and both combined and comparative analyses

    Advances in the Management of Juvenile Idiopathic Arthritis

    Get PDF
    __Abstract__ The main aim of this thesis was the evaluation of advances in the management of JIA. It focused on developments in the biologic treatment of JIA, using data from the ABC register. Additionally, it explored new biomarkers and methods for monitoring the disease activity, bone age and bone health of patients with JIA

    The development and assessment of biological treatments for children

    Get PDF
    The development of biological agents with specific immunological targets has revolutionized the treatment of a wide variety of paediatric diseases where traditional immunosuppressive agents have been partly ineffective or intolerable. The increasing requirement for pharmaceutical companies to undertake paediatric studies has provided impetus for studies of biologics in children. The assessment of biological agents in children to date has largely relied upon randomized controlled trials using a withdrawal design, rather than a parallel study design. This approach has been largely used due to ethical concerns, including use of placebo treatments in children with active chronic disease, and justified on the basis that treatments have usually already undergone robust assessment in related adult conditions. However, this study design limits the reliability of the data and can confuse the interpretation of safety results. Careful ongoing monitoring of safety and efficacy in real-world practice through national and international biologics registries and robust reporting systems is crucial. The most commonly used biological agents in children target tumour necrosis factor-α, interleukin-1, interleukin-6 and cytotoxic lymphocyte-associated antigen-4. These agents are most frequently used in paediatric rheumatic diseases. This review discusses the development and assessment of biologics within paediatric rheumatology with reference to the lessons learned from use in other subspecialties
    corecore