105 research outputs found

    Improving Disease Gene Prioritization by Comparing the Semantic Similarity of Phenotypes in Mice with Those of Human Diseases

    Get PDF
    Despite considerable progress in understanding the molecular origins of hereditary human diseases, the molecular basis of several thousand genetic diseases still remains unknown. High-throughput phenotype studies are underway to systematically assess the phenotype outcome of targeted mutations in model organisms. Thus, comparing the similarity between experimentally identified phenotypes and the phenotypes associated with human diseases can be used to suggest causal genes underlying a disease. In this manuscript, we present a method for disease gene prioritization based on comparing phenotypes of mouse models with those of human diseases. For this purpose, either human disease phenotypes are “translated” into a mouse-based representation (using the Mammalian Phenotype Ontology), or mouse phenotypes are “translated” into a human-based representation (using the Human Phenotype Ontology). We apply a measure of semantic similarity and rank experimentally identified phenotypes in mice with respect to their phenotypic similarity to human diseases. Our method is evaluated on manually curated and experimentally verified gene–disease associations for human and for mouse. We evaluate our approach using a Receiver Operating Characteristic (ROC) analysis and obtain an area under the ROC curve of up to . Furthermore, we are able to confirm previous results that the Vax1 gene is involved in Septo-Optic Dysplasia and suggest Gdf6 and Marcks as further potential candidates. Our method significantly outperforms previous phenotype-based approaches of prioritizing gene–disease associations. To enable the adaption of our method to the analysis of other phenotype data, our software and prioritization results are freely available under a BSD licence at http://code.google.com/p/phenomeblast/wiki/CAMP. Furthermore, our method has been integrated in PhenomeNET and the results can be explored using the PhenomeBrowser at http://phenomebrowser.net

    Quantitative comparison of mapping methods between Human and Mammalian Phenotype Ontology

    Get PDF
    Researchers use animal studies to better understand human diseases. In recent years, large-scale phenotype studies such as Phenoscape and EuroPhenome have been initiated to identify genetic causes of a species' phenome. Species-specific phenotype ontologies are required to capture and report about all findings and to automatically infer results relevant to human diseases. The integration of the different phenotype ontologies into a coherent framework is necessary to achieve interoperability for cross-species research. Here, we investigate the quality and completeness of two different methods to align the Human Phenotype Ontology and the Mammalian Phenotype Ontology. The first method combines lexical matching with inference over the ontologies' taxonomic structures, while the second method uses a mapping algorithm based on the formal definitions of the ontologies. Neither method could map all concepts. Despite the formal definitions method provides mappings for more concepts than does the lexical matching method, it does not outperform the lexical matching in a biological use case. Our results suggest that combining both approaches will yield a better mappings in terms of completeness, specificity and application purposes

    Relations as patterns: bridging the gap between OBO and OWL.

    Get PDF
    BACKGROUND: Most biomedical ontologies are represented in the OBO Flatfile Format, which is an easy-to-use graph-based ontology language. The semantics of the OBO Flatfile Format 1.2 enforces a strict predetermined interpretation of relationship statements between classes. It does not allow flexible specifications that provide better approximations of the intuitive understanding of the considered relations. If relations cannot be accurately expressed then ontologies built upon them may contain false assertions and hence lead to false inferences. Ontologies in the OBO Foundry must formalize the semantics of relations according to the OBO Relationship Ontology (RO). Therefore, being able to accurately express the intended meaning of relations is of crucial importance. Since the Web Ontology Language (OWL) is an expressive language with a formal semantics, it is suitable to de ne the meaning of relations accurately. RESULTS: We developed a method to provide definition patterns for relations between classes using OWL and describe a novel implementation of the RO based on this method. We implemented our extension in software that converts ontologies in the OBO Flatfile Format to OWL, and also provide a prototype to extract relational patterns from OWL ontologies using automated reasoning. The conversion software is freely available at http://bioonto.de/obo2owl, and can be accessed via a web interface. CONCLUSIONS: Explicitly defining relations permits their use in reasoning software and leads to a more flexible and powerful way of representing biomedical ontologies. Using the extended langua0067e and semantics avoids several mistakes commonly made in formalizing biomedical ontologies, and can be used to automatically detect inconsistencies. The use of our method enables the use of graph-based ontologies in OWL, and makes complex OWL ontologies accessible in a graph-based form. Thereby, our method provides the means to gradually move the representation of biomedical ontologies into formal knowledge representation languages that incorporates an explicit semantics. Our method facilitates the use of OWL-based software in the back-end while ontology curators may continue to develop ontologies with an OBO-style front-end

    Interoperability between biomedical ontologies through relation expansion, upper-level ontologies and automatic reasoning

    Get PDF
    Researchers design ontologies as a means to accurately annotate and integrate experimental data across heterogeneous and disparate data- and knowledge bases. Formal ontologies make the semantics of terms and relations explicit such that automated reasoning can be used to verify the consistency of knowledge. However, many biomedical ontologies do not sufficiently formalize the semantics of their relations and are therefore limited with respect to automated reasoning for large scale data integration and knowledge discovery. We describe a method to improve automated reasoning over biomedical ontologies and identify several thousand contradictory class definitions. Our approach aligns terms in biomedical ontologies with foundational classes in a top-level ontology and formalizes composite relations as class expressions. We describe the semi-automated repair of contradictions and demonstrate expressive queries over interoperable ontologies. Our work forms an important cornerstone for data integration, automatic inference and knowledge discovery based on formal representations of knowledge. Our results and analysis software are available at http://bioonto.de/pmwiki.php/Main/ReasonableOntologies

    Ontology design patterns to disambiguate relations between genes and gene products in GENIA

    Get PDF
    MOTIVATION: Annotated reference corpora play an important role in biomedical information extraction. A semantic annotation of the natural language texts in these reference corpora using formal ontologies is challenging due to the inherent ambiguity of natural language. The provision of formal definitions and axioms for semantic annotations offers the means for ensuring consistency as well as enables the development of verifiable annotation guidelines. Consistent semantic annotations facilitate the automatic discovery of new information through deductive inferences. RESULTS: We provide a formal characterization of the relations used in the recent GENIA corpus annotations. For this purpose, we both select existing axiom systems based on the desired properties of the relations within the domain and develop new axioms for several relations. To apply this ontology of relations to the semantic annotation of text corpora, we implement two ontology design patterns. In addition, we provide a software application to convert annotated GENIA abstracts into OWL ontologies by combining both the ontology of relations and the design patterns. As a result, the GENIA abstracts become available as OWL ontologies and are amenable for automated verification, deductive inferences and other knowledge-based applications. AVAILABILITY: Documentation, implementation and examples are available from http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/

    The influence of disease categories on gene candidate predictions from model organism phenotypes

    Get PDF
    Background The molecular etiology is still to be identified for about half of the currently described Mendelian diseases in humans, thereby hindering efforts to find treatments or preventive measures. Advances, such as new sequencing technologies, have led to increasing amounts of data becoming available with which to address the problem of identifying disease genes. Therefore, automated methods are needed that reliably predict disease gene candidates based on available data. We have recently developed Exomiser as a tool for identifying causative variants from exome analysis results by filtering and prioritising using a number of criteria including the phenotype similarity between the disease and mouse mutants involving the gene candidates. Initial investigations revealed a variation in performance for different medical categories of disease, due in part to a varying contribution of the phenotype scoring component. Results In this study, we further analyse the performance of our cross-species phenotype matching algorithm, and examine in more detail the reasons why disease gene filtering based on phenotype data works better for certain disease categories than others. We found that in addition to misleading phenotype alignments between species, some disease categories are still more amenable to automated predictions than others, and that this often ties in with community perceptions on how well the organism works as model. Conclusions In conclusion, our automated disease gene candidate predictions are highly dependent on the organism used for the predictions and the disease category being studied. Future work on computational disease gene prediction using phenotype data would benefit from methods that take into account the disease category and the source of model organism data

    The psycho-ENV corpus:Research articles annotated for knowledge discovery on correlating mental diseases and environmental factors

    Get PDF
    While the published scientific literature is used in a biomedical context such as building gene networks for disease gene discovery, it seems to be an undervalued resource with respect to mental illnesses. It has been rarely explored for the purpose of gaining psychopathology insights. This limits our capability of better understanding the underlying mechanisms of mental disorders. In this paper we describe the psycho-env corpus, which aims at annotating published studies for facilitating knowledge discovery on pathologies of mental diseases. Specifically, this corpus focuses on the correlations between mental diseases and environmental factors. We report the first preliminary work of psycho-env on annotating 20 articles about two mental illnesses (bipolar disorder and depression) and two particular environmental factors - light and sunlight. The corpus is available at https://github.com/KHP-Informatics/psycho-env

    Special issue on bio-ontologies and phenotypes

    Get PDF
    The bio-ontologies and phenotypes special issue includes eight papers selected from the 11 papers presented at the Bio-Ontologies SIG (Special Interest Group) and the Phenotype Day at ISMB (Intelligent Systems for Molecular Biology) conference in Boston in 2014. The selected papers span a wide range of topics including the automated re-use and update of ontologies, quality assessment of ontological resources, and the systematic description of phenotype variation, driven by manual, semi- and fully automatic means

    Thematic issue of the Second combined Bio-ontologies and Phenotypes Workshop.

    Get PDF
    This special issue covers selected papers from the 18th Bio-Ontologies Special Interest Group meeting and Phenotype Day, which took place at the Intelligent Systems for Molecular Biology (ISMB) conference in Dublin in 2015. The papers presented in this collection range from descriptions of software tools supporting ontology development and annotation of objects with ontology terms, to applications of text mining for structured relation extraction involving diseases and phenotypes, to detailed proposals for new ontologies and mapping of existing ontologies. Together, the papers consider a range of representational issues in bio-ontology development, and demonstrate the applicability of bio-ontologies to support biological and clinical knowledge-based decision making and analysis.The full set of papers in the Thematic Issue is available at http://www.biomedcentral.com/collections/sig

    An ontology approach to comparative phenomics in plants

    Get PDF
    BACKGROUND: Plant phenotype datasets include many different types of data, formats, and terms from specialized vocabularies. Because these datasets were designed for different audiences, they frequently contain language and details tailored to investigators with different research objectives and backgrounds. Although phenotype comparisons across datasets have long been possible on a small scale, comprehensive queries and analyses that span a broad set of reference species, research disciplines, and knowledge domains continue to be severely limited by the absence of a common semantic framework. RESULTS: We developed a workflow to curate and standardize existing phenotype datasets for six plant species, encompassing both model species and crop plants with established genetic resources. Our effort focused on mutant phenotypes associated with genes of known sequence in Arabidopsis thaliana (L.) Heynh. (Arabidopsis), Zea mays L. subsp. mays (maize), Medicago truncatula Gaertn. (barrel medic or Medicago), Oryza sativa L. (rice), Glycine max (L.) Merr. (soybean), and Solanum lycopersicum L. (tomato). We applied the same ontologies, annotation standards, formats, and best practices across all six species, thereby ensuring that the shared dataset could be used for cross-species querying and semantic similarity analyses. Curated phenotypes were first converted into a common format using taxonomically broad ontologies such as the Plant Ontology, Gene Ontology, and Phenotype and Trait Ontology. We then compared ontology-based phenotypic descriptions with an existing classification system for plant phenotypes and evaluated our semantic similarity dataset for its ability to enhance predictions of gene families, protein functions, and shared metabolic pathways that underlie informative plant phenotypes. CONCLUSIONS: The use of ontologies, annotation standards, shared formats, and best practices for cross-taxon phenotype data analyses represents a novel approach to plant phenomics that enhances the utility of model genetic organisms and can be readily applied to species with fewer genetic resources and less well-characterized genomes. In addition, these tools should enhance future efforts to explore the relationships among phenotypic similarity, gene function, and sequence similarity in plants, and to make genotype-to-phenotype predictions relevant to plant biology, crop improvement, and potentially even human health.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]
    • 

    corecore