92 research outputs found

    Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques

    Get PDF
    Site-specific management promotes the identification and management of areas within the field, which represent subfield regions with homogeneous characteristics (management zones). However, determination of subfield areas is difficult because of the complex combination of factors which could affect crop yield. One possibility to capture yield variability is the use of soil physical properties to define the management zones as they are related to plant available water. With the aim of characterizing the spatial variability of the main soil physical variables and using this information to determine potential management zones, soil samples were taken from 70 locations in a 33-ha field in Badajoz, southwestern Spain. Firstly, accurate spatial distribution maps of the soil attributes were generated by using regression kriging as the most suitable algorithm in which exhaustive secondary information on soil apparent electrical conductivity (ECa) was incorporated. ECa measurements were carried out with a Veris 3100 operating in both shallow (0–30 cm), ECs, and deep (0–90 cm), ECd,mode. Clay, coarse sand and fine sand were the soil physical properties which exhibited higher correlation with ECa (positively correlated with the finer texture component, clay, and negatively correlated with the coarser ones, coarse and fine sands), particularly with ECs. Thus, this was the secondary variable used to obtain the kriged maps. Later, principal component analysis and fuzzy cluster classification were performed to delineate management zones, resulting in two subfields to be managed separately. This number of subfields was determined using the fuzzy performance index and normalized classification entropy as the way to optimize the classification algorithm

    Maternal Melatonin Programs the Daily Pattern of Energy Metabolism in Adult Offspring

    Get PDF
    Background: Shift work was recently described as a factor that increases the risk of Type 2 diabetes mellitus. In addition, rats born to mothers subjected to a phase shift throughout pregnancy are glucose intolerant. However, the mechanism by which a phase shift transmits metabolic information to the offspring has not been determined. Among several endocrine secretions, phase shifts in the light/dark cycle were described as altering the circadian profile of melatonin production by the pineal gland. The present study addresses the importance of maternal melatonin for the metabolic programming of the offspring. Methodology/Principal Findings: Female Wistar rats were submitted to SHAM surgery or pinealectomy (PINX). The PINX rats were divided into two groups and received either melatonin (PM) or vehicle. The SHAM, the PINX vehicle and the PM females were housed with male Wistar rats. Rats were allowed to mate and after weaning, the male and female offspring were subjected to a glucose tolerance test (GTT), a pyruvate tolerance test (PTT) and an insulin tolerance test (ITT). Pancreatic islets were isolated for insulin secretion, and insulin signaling was assessed in the liver and in the skeletal muscle by western blots. We found that male and female rats born to PINX mothers display glucose intolerance at the end of the light phase of the light/dark cycle, but not at the beginning. We further demonstrate that impaired glucose-stimulated insulin secretion and hepatic insulin resistance are mechanisms that may contribute to glucose intolerance in the offspring of PINX mothers. The metabolic programming described here occurs due to an absence of maternal melatonin because the offspring born to PINX mothers treated with melatonin were not glucose intolerant. Conclusions/Significance: The present results support the novel concept that maternal melatonin is responsible for the programming of the daily pattern of energy metabolism in their offspring.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)CNPq (Conselho Nacional de Aperfeicoameno Cientifico)CNPq (Conselho Nacional de Aperfeicoameno Cientifico

    Metformin attenuates the exacerbation of the allergic eosinophilic inflammation in high fat-diet-induced obesity in mice

    Get PDF
    A positive relationship between obesity and asthma has been well documented. The AMP-activated protein kinase (AMPK) activator metformin reverses obesity-associated insulin resistance (IR) and inhibits different types of inflammatory responses. This study aimed to evaluate the effects of metformin on the exacerbation of allergic eosinophilic inflammation in obese mice. Male C57BL6/J mice were fed for 10 weeks with high-fat diet (HFD) to induce obesity. The cell infiltration and inflammatory markers in bronchoalveolar lavage (BAL) fluid and lung tissue were evaluated at 48 h after ovalbumin (OVA) challenge. HFD obese mice displayed peripheral IR that was fully reversed by metformin (300 mg/kg/day, two weeks). OVA-challenge resulted in higher influx of total cell and eosinophils in lung tissue of obese mice compared with lean group. As opposed, the cell number in BAL fluid of obese mice was reduced compared with lean group. Metformin significantly reduced the tissue eosinophil infiltration and prevented the reduction of cell counts in BAL fluid. In obese mice, greater levels of eotaxin, TNF-α and NOx, together with increased iNOS protein expression were observed, all of which were normalized by metformin. In addition, metformin nearly abrogated the binding of NF-κB subunit p65 to the iNOS promoter gene in lung tissue of obese mice. Lower levels of phosphorylated AMPK and its downstream target acetyl CoA carboxylase (ACC) were found in lung tissue of obese mice, which were restored by metformin. In separate experiments, the selective iNOS inhibitor aminoguanidine (20 mg/kg, 3 weeks) and the anti-TNF-α mAb (2 mg/kg) significantly attenuated the aggravation of eosinophilic inflammation in obese mice. In conclusion, metformin inhibits the TNF-α-induced inflammatory signaling and NF-κB-mediated iNOS expression in lung tissue of obese mice. Metformin may be a good pharmacological strategy to control the asthma exacerbation in obese individuals.Fundação de Amparo à Pesquisa do Estado de São Paulo, 2012/14225-

    Quercetin Decreases Inflammatory Response And Increases Insulin Action In Skeletal Muscle Of Ob/ob Mice And In L6 Myotubes.

    No full text
    Quercetin is a potent anti-inflammatory flavonoid, but its capacity to modulate insulin sensitivity in obese insulin resistant conditions is unknown. This study investigated the effect of quercetin treatment upon insulin sensitivity of ob/ob mice and its potential molecular mechanisms. Obese ob/ob mice were treated with quercetin for 10 weeks, and L6 myotubes were treated with either palmitate or tumor necrosis factor-α (TNFα) plus quercetin. Cells and muscles were processed for analysis of glucose transporter 4 (GLUT4), TNFα and inducible nitric oxide synthase (iNOS) expression, and c-Jun N-terminal kinase (JNK) and inhibitor of nuclear factor-κB (NF-κB) kinase (IκK) phosphorylation. Myotubes were assayed for glucose uptake and NF-κB translocation. Chromatin immunoprecipitation assessed NF-κB binding to GLUT4 promoter. Quercetin treatment improved whole body insulin sensitivity by increasing GLUT4 expression and decreasing JNK phosphorylation, and TNFα and iNOS expression in skeletal muscle. Quercetin suppressed palmitate-induced upregulation of TNFα and iNOS and restored normal levels of GLUT4 in myotubes. In parallel, quercetin suppressed TNFα-induced reduction of glucose uptake in myotubes. Nuclear accumulation of NF-κB in myotubes and binding of NF-κB to GLUT4 promoter in muscles of ob/ob mice were also reduced by quercetin. We demonstrated that quercetin decreased the inflammatory status in skeletal muscle of obese mice and in L6 myotubes. This effect was followed by increased muscle GLUT4, with parallel improvement of insulin sensitivity. These results point out quercetin as a putative strategy to manage inflammatory-related insulin resistance.689285-9

    Quercetin decreases inflammatory response and increases insulin action in skeletal muscle of ob/ob mice and in L6 myotubes

    No full text
    Quercetin is a potent anti-inflammatory flavonoid, but its capacity to modulate insulin sensitivity in obese insulin resistant conditions is unknown. This study investigated the effect of quercetin treatment upon insulin sensitivity of ob/ob mice and its potential molecular mechanisms. Obese ob/ob mice were treated with quercetin for 10 weeks, and L6 myotubes were treated with either palmitate or tumor necrosis factor-α (TNFα) plus quercetin. Cells and muscles were processed for analysis of glucose transporter 4 (GLUT4), TNFα and inducible nitric oxide synthase (iNOS) expression, and c-Jun N-terminal kinase (JNK) and inhibitor of nuclear factor-κB (NF-κB) kinase (IκK) phosphorylation. Myotubes were assayed for glucose uptake and NF-κB translocation. Chromatin immunoprecipitation assessed NF-κB binding to GLUT4 promoter. Quercetin treatment improved whole body insulin sensitivity by increasing GLUT4 expression and decreasing JNK phosphorylation, and TNFα and iNOS expression in skeletal muscle. Quercetin suppressed palmitate-induced upregulation of TNFα and iNOS and restored normal levels of GLUT4 in myotubes. In parallel, quercetin suppressed TNFα-induced reduction of glucose uptake in myotubes. Nuclear accumulation of NF-κB in myotubes and binding of NF-κB to GLUT4 promoter in muscles of ob/ob mice were also reduced by quercetin. We demonstrated that quercetin decreased the inflammatory status in skeletal muscle of obese mice and in L6 myotubes. This effect was followed by increased muscle GLUT4, with parallel improvement of insulin sensitivity. These results point out quercetin as a putative strategy to manage inflammatory-related insulin resistance6891-3285293CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPnão temnão te

    Involvement of phosphatidylinositol-3 kinase/AKT/PKCzeta/lambda pathway in the effect of palmitate on glucose-induced insulin secretion

    Get PDF
    In the present study, a novel pathway by which palmitate potentiates glucose-induced insulin secretion by pancreatic beta cells was investigated.status: publishe

    Short-term modulation of extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun NH2-terminal kinase in pancreatic islets by glucose and palmitate: possible involvement of ceramide

    No full text
    The effect of glucose and palmitate on the phosphorylation of proteins associated with cell growth and survival (extracellular signal-regulated kinase 1/2 [ERK1/2] and stress-activated protein kinase/c-Jun NH2-terminal kinase [SAPK/JNK]) and on the expression of immediate early genes was investigated.status: publishe

    Staphylococcus aureus enterotoxins A and B inhibit human and mice eosinophil chemotaxis and adhesion in vitro

    No full text
    Staphylococcus aureus aggravates the allergic eosinophilic inflammation. We hypothesized that Staphylococcus aureus-derived enterotoxins directly affect eosinophil functions. Therefore, this study investigated the effects of Staphylococcal enterotoxins A and B (SEA and SEB) on human and mice eosinophil chemotaxis and adhesion in vitro, focusing on p38 MAPK phosphorylation and intracellular Ca(2+) mobilization. Eosinophil chemotaxis was evaluated using a microchemotaxis chamber, whereas adhesion was performed in VCAM-1 and ICAM-1-coated plates. Measurement of p38 MAPK phosphorylation and intracellular Ca(2+) levels were monitored by flow cytometry and fluorogenic calcium-binding dye, respectively. Prior incubation (30 to 240 min) of human blood eosinophils with SEA (0.5 to 3 ng/ml) significantly reduced eotaxin-, PAF- and RANTES-induced chemotaxis (P<0.05). Likewise, SEB (1 ng/ml, 30 min) significantly reduced eotaxin-induced human eosinophil chemotaxis (P<0.05). The reduction of eotaxin-induced human eosinophil chemotaxis by SEA and SEB was prevented by anti-MHC monoclonal antibody (1 μg/ml). In addition, SEA and SEB nearly suppressed the eotaxin-induced human eosinophil adhesion in ICAM-1- and VCAM-1-coated plates. SEA and SEB prevented the increases of p38 MAPK phosphorylation and Ca(2+) levels in eotaxin-activated human eosinophils. In separate protocols, we evaluated the effects of SEA on chemotaxis and adhesion of eosinophils obtained from mice bone marrow. SEA (10 ng/ml) significantly reduced the eotaxin-induced chemotaxis along with cell adhesion to both ICAM-1 and VCAM-1-coated plates (P<0.05). In conclusion, the inhibition by SEA and SEB of eosinophil functions (chemotaxis and adhesion) are associated with reductions of p38 MAPK phosphorylation and intracellular Ca(2+) mobilization.Staphylococcus aureus aggravates the allergic eosinophilic inflammation. We hypothesized that Staphylococcus aureus-derived enterotoxins directly affect eosinophil functions. Therefore, this study investigated the effects of Staphylococcal enterotoxins A and B (SEA and SEB) on human and mice eosinophil chemotaxis and adhesion in vitro, focusing on p38 MAPK phosphorylation and intracellular Ca2+ mobilization. Eosinophil chemotaxis was evaluated using a microchemotaxis chamber, whereas adhesion was performed in VCAM-1 and ICAM-1-coated plates. Measurement of p38 MAPK phosphorylation and intracellular Ca2+ levels were monitored by flow cytometry and fluorogenic calcium-binding dye, respectively. Prior incubation (30 to 240 min) of human blood eosinophils with SEA (0.5 to 3 ng/ml) significantly reduced eotaxin-, PAF- and RANTES-induced chemotaxis (P &lt; 0.05). Likewise, SEB (1 ng/ml, 30 min) significantly reduced eotaxin-induced human eosinophil chemotaxis (P &lt; 0.05). The reduction of eotaxin-induced human eosinophil chemotaxis by SEA and SEB was prevented by anti-MHC monoclonal antibody (1 μg/ml). In addition, SEA and SEB nearly suppressed the eotaxin-induced human eosinophil adhesion in ICAM-1- and VCAM-1-coated plates. SEA and SEB prevented the increases of p38 MAPK phosphorylation and Ca2+ levels in eotaxin-activated human eosinophils. In separate protocols, we evaluated the effects of SEA on chemotaxis and adhesion of eosinophils obtained from mice bone marrow. SEA (10 ng/ml) significantly reduced the eotaxin-induced chemotaxis alongwith cell adhesion to both ICAM-1 and VCAM-1-coated plates (P &lt; 0.05). In conclusion, the inhibition by SEA and SEB of eosinophil functions (chemotaxis and adhesion) are associated with reductions of p38 MAPK phosphorylation and intracellular Ca2+ mobilization23266467
    corecore