5,237 research outputs found

    Dijet Production at Large Rapidity Separation in N=4 SYM

    Full text link
    Ratios of azimuthal angle correlations between two jets produced at large rapidity separation are studied in the N=4 super Yang-Mills theory (MSYM). It is shown that these observables, which directly prove the SL(2,C) symmetry present in gauge theories in the Regge limit, exhibit an excellent perturbative convergence. They are compared to those calculated in QCD for different renormalization schemes concluding that the momentum-substraction (MOM) scheme with the Brodsky-Lepage-Mackenzie (BLM) scale-fixing procedure captures the bulk of the MSYM results.Comment: 13 pages, 7 figure

    Effect of turbulence on electron cyclotron current drive and heating in ITER

    Get PDF
    Non-linear local electromagnetic gyrokinetic turbulence simulations of the ITER standard scenario H-mode are presented for the q=3/2 and q=2 surfaces. The turbulent transport is examined in regions of velocity space characteristic of electrons heated by electron cyclotron waves. Electromagnetic fluctuations and sub-dominant micro-tearing modes are found to contribute significantly to the transport of the accelerated electrons, even though they have only a small impact on the transport of the bulk species. The particle diffusivity for resonant passing electrons is found to be less than 0.15 m^2/s, and their heat conductivity is found to be less than 2 m^2/s. Implications for the broadening of the current drive and energy deposition in ITER are discussed.Comment: Letter, 5 pages, 5 figures, for submission to Nuclear Fusio

    On the mutual effect of ion temperature gradient instabilities and impurity peaking in the reversed field pinch

    Full text link
    The presence of impurities is considered in gyrokinetic calculations of ion temperature gradient (ITG) instabilities and turbulence in the reversed field pinch device RFX-mod. This device usually exhibits hollow Carbon/Oxygen profiles, peaked in the outer core region. We describe the role of the impurities in ITG mode destabilization, and analyze whether ITG turbulence is compatible with their experimental gradients.Comment: 19 pages, 9 figures, accepted for publication in Plasma Phys. Control. Fusio

    Global gyrokinetic simulations of intrinsic rotation in ASDEX Upgrade Ohmic L-mode plasmas

    Full text link
    Non-linear, radially global, turbulence simulations of ASDEX Upgrade (AUG) plasmas are performed and the nonlinear generated intrinsic flow shows agreement with the intrinsic flow gradients measured in the core of Ohmic L-mode plasmas at nominal parameters. Simulations utilising the kinetic electron model show hollow intrinsic flow profiles as seen in a predominant number of experiments performed at similar plasma parameters. In addition, significantly larger flow gradients are seen than in a previous flux-tube analysis (Hornsby et al {\it Nucl. Fusion} (2017)). Adiabatic electron model simulations can show a flow profile with opposing sign in the gradient with respect to a kinetic electron simulation, implying a reversal in the sign of the residual stress due to kinetic electrons. The shaping of the intrinsic flow is strongly determined by the density gradient profile. The sensitivity of the residual stress to variations in density profile curvature is calculated and seen to be significantly stronger than to neoclassical flows (Hornsby et al {\it Nucl. Fusion} (2017)). This variation is strong enough on its own to explain the large variations in the intrinsic flow gradients seen in some AUG experiments. Analysis of the symmetry breaking properties of the turbulence shows that profile shearing is the dominant mechanism in producing a finite parallel wave-number, with turbulence gradient effects contributing a smaller portion of the parallel wave-vector

    Long pulse excitation thermographic non-destructive evaluation

    Get PDF
    A comprehensive analysis of the defect detection performance of long pulse excitation thermographic NDE is presented. An analytical procedure for predicting the thermal image contrasts of defects of specified size and depth is developed and validated by extensive experimental studies of test pieces having a wide range of thermal properties. Results obtained using long pulse (~5 s) excitation are compared with those obtained using traditional flash excitation. The conditions necessary for the success of the long pulse method are explained and illustrated by both modelling and experimental results. Practical advantages of long pulse excitation are discussed

    AIF-1 gene does not confer susceptibility to Behçet's disease: Analysis of extended haplotypes in Sardinian population

    Get PDF
    Background BehcEet's disease (BD) is a polygenic immune-mediated disorder characterized by a close association with the HLA-B∗51 allele. The HLA region has a strong linkage disequilibrium (LD) and carries several genetic variants (e.g. MIC-A, TNF-α genes) identified as associated to BD because of their LD with HLA-B∗51. In fact, the HLA-B∗51 is inherited as part of extended HLA haplotypes which are well preserved in patients with BD. Sardinian population is highly differentiated from other Mediterranean populations because of a distinctive genetic structure with very highly preserved HLA haplotypes. Patients and methods In order to identify other genes of susceptibility to BD within the HLA region we investigated the distribution of human Allograft Inflammatory Factor-1 (AIF-1) gene variants among BD patients and healthy controls from Sardinia. Six (rs2736182; rs2259571; rs2269475; rs2857597; rs13195276; rs4711274) AIF-1 single nucleotide polymorphisms (SNPs) and related extended haplotypes have been investigated as well as their LD within the HLA region and with HLA-B∗51. Overall, 64 BD patients, 43 HLA-B∗51 positive healthy controls (HC) and 70 random HC were enrolled in the study. Results HLA-B∗51 was the only allele with significantly higher frequency (pc = 0.0021) in BD patients (40.6%) than in HC (9.8%). The rs2259571TAIF-1 variant had a significantly reduced phenotypic, but not allelic frequency in BD patients (72.1%; pc = 0.014) compared to healthy population (91.3%). That was likely due to the LD between HLA-B∗51 and rs2259571G(pc= 9E-5), even though the rs2259571Gdistribution did not significantly differ between BD patients and HC. Conclusion No significant difference in distribution of AIF-1 SNPs haplotypes was observed between BD patients and HC and between HLA-B∗51 positive BD patients and HLA-B∗51 positive HC. Taken together, these results suggest that AIF-1 gene is not associated with susceptibility to BD in Sardinia

    Expression analysis of HLA-E and NKG2A and NKG2C receptors points at a role for natural killer function in ankylosing spondylitis

    Get PDF
    Background. Ankylosing Spondylitis (AS) is a complex chronic inflammatory disease strongly associated with the majority of HLA-B27 alleles. HLA-E are non-classical MHC class I molecules that specifically interact with the natural killer receptors NKG2A (inhibitory) and NKG2C (activating), and have been recently proposed to be involved in AS pathogenesis. Objectives: To analyze the expression of HLA-E and the CD94/NKG2 pair of receptors in HLA-B27 positive AS patients and healthy controls (HC) bearing the AS-associated, B*2705 and the non-AS-associated, B*2709 allele. Methods: The level of surface expression of HLA-E molecules on CD14 positive peripheral blood mononuclear cell was evaluated in 21 HLA-B*2705 patients with AS, 12 HLA-B*2705 HC, 12 HLA-B*2709 HC and 6 HLA-B27 negative HC, using the monoclonal antibody MEM-E/08 by quantitative cytofluorimetric analysis. The percentage and density of expression of HLA-E ligands NKG2A and NKG2C were also measured on CD3-CD56+ NK cells. Results. HLA-E expression in CD14 positive cells was significantly higher in AS patients (587.0 IQR 424-830) compared to B*2705 HC (389 IQR 251.3-440.5, p=0.0007), B*2709 HC (294.5 IQR 209.5-422, p=0.0004) and HLA-B27 negative HC (380 IQR 197.3-515.0, p=0.01). A higher number of NK cells expressing NKG2A compared to NKG2C was found in all cohort analysed as well as a higher cell surface density. Conclusion: The higher surface level of HLA-E molecules in AS patients compared to HC, concurrently with a prevalent expression of NKG2A, suggests that the crosstalk between these two molecules might play a role in AS pathogenesis accounting for the previously reported association between HLA-E and AS

    Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade

    Get PDF
    Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the most peaked boron profiles. The sensitivities of both datasets to possible errors is investigated, and quantitative agreement is found within the estimated uncertainties. The approach used can be considered a template for mitigating uncertainty in quantitative comparisons between simulation and experiment.Comment: 19 pages, 11 figures, accepted in Nuclear Fusio
    • 

    corecore