61 research outputs found

    The impact of fiscal policies on corruption: A panel analysis

    Get PDF
    This article seeks to complement the previous literature and clarify whether fiscal policy plays a role in the level of corruption of a country. The present work investigates whether the increase in fiscal pressure leads to a higher level of corruption and whether the results differ from developed to developing countries. This article examines a large sample consisting of over 185 countries, during the period 2005–2014. The technique employed was short panel data. Five statistical models were used such as the pooled OLS, pooled FGLS, within model, between model and random-effects GLS model. Our main contribution consists in finding differentiated results of the influence of fiscal policy on the level of corruption among developed and developing countries. For developed countries, we found that, with high-quality institutions, low fiscal pressure leads to a lower level of corruption, which is in line with expectations. Conversely, in developing countries, with low-level institutional quality, low fiscal pressure increases corruption, because of low governance efficiency under which people may easily circumvent the law. Our findings suggest that governments and policy-makers need to acknowledge that the anti-corruption fight requires not only the right fiscal policies but also the right way of implementing these policies, recognising the role of quality institutions, which need to prevail in any country

    CD34+cells augment endothelial cell differentiation of CD14+endothelial progenitor cells in vitro

    Get PDF
    Neovascularization by endothelial progenitor cells (EPC) for the treatment of ischaemic diseases has been a topic of intense research. The CD34+ cell is often designated as EPC, because it contributes to repair of ischaemic injuries through neovascularization. However, incorporation of CD34+ cells into the neovasculature is limited, suggesting another role which could be paracrine. CD14+ cells can also differentiate into endothelial cells and contribute to neovascularization. However, the low proliferative capacity of CD14+ cell-derived endothelial cells hampers their use as therapeutic cells. We made the assumption that an interaction between CD34+ and CD14+ cells augments endothelial differentiation of the CD14+ cells. In vitro, the influence of CD34+ cells on the endothelial differentiation capacity of CD14+ cells was investigated. Endothelial differentiation was analysed by expression of endothelial cell markers CD31, CD144, von Willebrand Factor and endothelial Nitric Oxide Synthase. Furthermore, we assessed proliferative capacity and endothelial cell function of the cells in culture. In monocultures, 63% of the CD14+-derived cells adopted an endothelial cell phenotype, whereas in CD34+/CD14+ co-cultures 95% of the cells showed endothelial cell differentiation. Proliferation increased up to 12% in the CD34+/CD14+ co-cultures compared to both monocultures. CD34-conditioned medium also increased endothelial differentiation of CD14+ cells. This effect was abrogated by hepatocyte growth factor neutralizing antibodies, but not by interleukin-8 and monocyte chemoattractant protein-1 neutralizing antibodies. We show that co-culturing of CD34+ and CD14+ cells results in a proliferating population of functional endothelial cells, which may be suitable for treatment of ischaemic diseases such as myocardial infarction

    Platelet-derived growth factor receptor-β, carrying the activating mutation D849N, accelerates the establishment of B16 melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Platelet-derived growth factor (PDGF)-BB and PDGF receptor (PDGFR)-β are mainly expressed in the developing vasculature, where PDGF-BB is produced by endothelial cells and PDGFR-β is expressed by mural cells, including pericytes. PDGF-BB is produced by most types of solid tumors, and PDGF receptor signaling participates in various processes, including autocrine stimulation of tumor cell growth, recruitment of tumor stroma fibroblasts, and stimulation of tumor angiogenesis. Furthermore, PDGF-BB-producing tumors are characterized by increased pericyte abundance and accelerated tumor growth. Thus, there is a growing interest in the development of tumor treatment strategies by blocking PDGF/PDGFR function. We have recently generated a mouse model carrying an activated PDGFR-β by replacing the highly conserved aspartic acid residue (D) 849 in the activating loop with asparagine (N). This allowed us to investigate, in an orthotopic tumor model, the role of increased stromal PDGFR-β signaling in tumor-stroma interactions.</p> <p>Methods</p> <p>B16 melanoma cells lacking PDGFR-β expression and either mock-transfected or engineered to express PDGF-BB, were injected alone or in combination with matrigel into mice carrying the activated PDGFR-β (D849N) and into wild type mice. The tumor growth rate was followed and the vessel status of tumors, i.e. total vessel area/tumor, average vessel surface and pericyte density of vessels, was analyzed after resection.</p> <p>Results</p> <p>Tumors grown in mice carrying an activated PDGFR-β were established earlier than those in wild-type mice. In this early phase, the total vessel area and the average vessel surface were higher in tumors grown in mice carrying the activated PDGFR-β (D849N) compared to wild-type mice, whereas we did not find a significant difference in the number of tumor vessels and the pericyte abundance around tumor vessels between wild type and mutant mice. At later phases of tumor progression, no significant difference in tumor growth rate was observed between wild type mice and mutant mice, although the pericyte coverage was higher around tumor vessels from mutant mice.</p> <p>Conclusion</p> <p>Our findings suggest that the activated PDGFR-β (D849N) in the host animal increased the total vessel area and the average vessel surface even in PDGF-negative tumors, resulting in a shorter lag phase during tumor establishment.</p

    The complex TIE between macrophages and angiogenesis

    Get PDF
    Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway

    Tumor-Associated Macrophages (TAMs) Form an Interconnected Cellular Supportive Network in Anaplastic Thyroid Carcinoma

    Get PDF
    BACKGROUND: A relationship between the increased density of tumor-associated macrophages (TAMs) and decreased survival was recently reported in thyroid cancer patients. Among these tumors, anaplastic thyroid cancer (ATC) is one of the most aggressive solid tumors in humans. TAMs (type M2) have been recognized as promoting tumor growth. The purpose of our study was to analyze with immunohistochemistry the presence of TAMs in a series of 27 ATC. METHODOLOGY/PRINCIPAL FINDINGS: Several macrophages markers such as NADPH oxidase complex NOX2-p22phox, CD163 and CD 68 were used. Immunostainings showed that TAMs represent more than 50% of nucleated cells in all ATCs. Moreover, these markers allowed the identification of elongated thin ramified cytoplasmic extensions, bestowing a "microglia-like" appearance on these cells which we termed "Ramified TAMs" (RTAMs). In contrast, cancer cells were totally negative. Cellular stroma was highly simplified since apart from cancer cells and blood vessels, RTAMs were the only other cellular component. RTAMs were evenly distributed and intermingled with cancer cells, and were in direct contact with other RTAMs via their ramifications. Moreover, RTAMs displayed strong immunostaining for connexin Cx43. Long chains of interconnected RTAMs arose from perivascular clusters and were dispersed within the tumor parenchyma. When expressed, the glucose transporter Glut1 was found in RTAMs and blood vessels, but rarely in cancer cells. CONCLUSION: ATCs display a very dense network of interconnected RTAMs in direct contact with intermingled cancer cells. To our knowledge this is the first time that such a network is described in a malignant tumor. This network was found in all our studied cases and appeared specific to ATC, since it was not found in differentiated thyroid cancers specimens. Taken together, these results suggest that RTAMs network is directly related to the aggressiveness of the disease via metabolic and trophic functions which remain to be determined

    Development of a distributed international patient data registry for hairy cell leukemia

    Get PDF
    Hairy cell leukemia (HCL) is a rare lymphoproliferative disorder, comprising only 2% of all leukemias. The Hairy Cell Leukemia Foundation (HCLF) has developed a patient data registry to enable investigators to better study the clinical features, treatment outcomes, and complications of patients with HCL. This system utilizes a centralized registry architecture. Patients are enrolled at HCL Centers of Excellence (COE) or via a web-based portal. All data are de-identified, which reduces regulatory burden and increases opportunities for data access and re-use. To date, 579 patients have been enrolled in the registry. Efforts are underway to engage additional COE’s to expand access to patients across the globe. This international PDR will enable researchers to study outcomes in HCL in ways not previously possible due to the rarity of the disease and will serve as a platform for future prospective research

    Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor

    Get PDF
    <div><p>Macrophages are a diverse group of phagocytic cells acting in host protection against stress, injury, and pathogens. Here, we show that the scavenger receptor SR-A6 is an entry receptor for human adenoviruses in murine alveolar macrophage-like MPI cells, and important for production of type I interferon. Scavenger receptors contribute to the clearance of endogenous proteins, lipoproteins and pathogens. Knockout of SR-A6 in MPI cells, anti-SR-A6 antibody or the soluble extracellular SR-A6 domain reduced adenovirus type-C5 (HAdV-C5) binding and transduction. Expression of murine SR-A6, and to a lower extent human SR-A6 boosted virion binding to human cells and transduction. Virion clustering by soluble SR-A6 and proximity localization with SR-A6 on MPI cells suggested direct adenovirus interaction with SR-A6. Deletion of the negatively charged hypervariable region 1 (HVR1) of hexon reduced HAdV-C5 binding and transduction, implying that the viral ligand for SR-A6 is hexon. SR-A6 facilitated macrophage entry of HAdV-B35 and HAdV-D26, two important vectors for transduction of hematopoietic cells and human vaccination. The study highlights the importance of scavenger receptors in innate immunity against human viruses.</p></div
    corecore