23 research outputs found

    Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with Rett Syndrome

    Get PDF
    Objective: Rett Syndrome is a progressive neurodevelopmental disorder caused mainly by mutations in the gene encoding methyl-CpG-binding protein 2. The relevance of MeCP2 for GABAergic function was previously documented in animal models. In these models, animals show deficits in brain-derived neurotrophic factor, which is thought to contribute to the pathogenesis of this disease. Neuronal Cation Chloride Cotransporters (CCCs) play a key role in GABAergic neuronal maturation, and brain-derived neurotrophic factor is implicated in the regulation of CCCs expression during development. Our aim was to analyse the expression of two relevant CCCs, NKCC1 and KCC2, in the cerebrospinal fluid of Rett syndrome patients and compare it with a normal control group. Methods: The presence of bumetanide sensitive NKCC1 and KCC2 was analysed in cerebrospinal fluid samples from a control pediatric population (1 day to 14 years of life) and from Rett syndrome patients (2 to 19 years of life), by immunoblot analysis. Results: Both proteins were detected in the cerebrospinal fluid and their levels are higher in the early postnatal period. However, Rett syndrome patients showed significantly reduced levels of KCC2 and KCC2/NKCC1 ratio when compared to the control group. Conclusions: Reduced KCC2/NKCC1 ratio in the cerebrospinal fluid of Rett Syndrome patients suggests a disturbed process of GABAergic neuronal maturation and open up a new therapeutic perspective

    Gene therapy for aromatic L-amino acid decarboxylase deficiency: Requirements for safe application and knowledge-generating follow-up

    Get PDF
    The autosomal recessive defect of aromatic L-amino acid decarboxylase (AADC) leads to a severe neurological disorder with manifestation in infancy due to a pronounced, combined deficiency of dopamine, serotonin and catecholamines. The success of conventional drug treatment is very limited, especially in patients with a severe phenotype. The development of an intracerebral AAV2-based gene delivery targeting the putamen or substantia nigra started more than 10 years ago. Recently, the putaminally-delivered construct, Eladocagene exuparvovec has been approved by the European Medicines Agency and by the British Medicines and Healthcare products Regulatory Agency. This now available gene therapy provides for the first time also for AADC deficiency (AADCD) a causal therapy, leading this disorder into a new therapeutic era. By using a standardized Delphi approach members of the International Working Group on Neurotransmitter related Disorders (iNTD) developed structural requirements and recommendations for the preparation, management and follow-up of AADC deficiency patients who undergo gene therapy. This statement underlines the necessity of a framework for a quality-assured application of AADCD gene therapy including Eladocagene exuparvovec. Treatment requires prehospital, inpatient and posthospital care by a multidisciplinary team in a specialized and qualified therapy center. Due to lack of data on long-term outcomes and the comparative efficacy of alternative stereotactic procedures and brain target sites, a structured follow-up plan and systematic documentation of outcomes in a suitable, industry-independent registry study are necessary

    Leigh syndrome is the main clinical characteristic of PTCD3 deficiency

    Full text link
    Mitochondrial translation defects are a continuously growing group of disorders showing a large variety of clinical symptoms including a wide range of neurological abnormalities. To date, mutations in PTCD3, encoding a component of the mitochondrial ribosome, have only been reported in a single individual with clinical evidence of Leigh syndrome. Here, we describe three additional PTCD3 individuals from two unrelated families, broadening the genetic and phenotypic spectrum of this disorder, and provide definitive evidence that PTCD3 deficiency is associated with Leigh syndrome. The patients presented in the first months of life with psychomotor delay, respiratory insufficiency and feeding difficulties. The neurologic phenotype included dystonia, optic atrophy, nystagmus and tonic-clonic seizures. Brain MRI showed optic nerve atrophy and thalamic changes, consistent with Leigh syndrome. WES and RNA-seq identified compound heterozygous variants in PTCD3 in both families: c.[1453-1G>C];[1918C>G] and c.[710del];[902C>T]. The functional consequences of the identified variants were determined by a comprehensive characterization of the mitochondrial function. PTCD3 protein levels were significantly reduced in patient fibroblasts and, consistent with a mitochondrial translation defect, a severe reduction in the steady state levels of complexes I and IV subunits was detected. Accordingly, the activity of these complexes was also low, and high-resolution respirometry showed a significant decrease in the mitochondrial respiratory capacity. Functional complementation studies demonstrated the pathogenic effect of the identified variants since the expression of wild-type PTCD3 in immortalized fibroblasts restored the steady-state levels of complexes I and IV subunits as well as the mitochondrial respiratory capacity. Additionally, minigene assays demonstrated that three of the identified variants were pathogenic by altering PTCD3 mRNA processing. The fourth variant was a frameshift leading to a truncated protein. In summary, we provide evidence of PTCD3 involvement in human disease confirming that PTCD3 deficiency is definitively associated with Leigh syndrome.© 2022 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology

    Diagnosis and management of glutaric aciduria type I – revised recommendations

    Get PDF
    Glutaric aciduria type I (synonym, glutaric acidemia type I) is a rare organic aciduria. Untreated patients characteristically develop dystonia during infancy resulting in a high morbidity and mortality. The neuropathological correlate is striatal injury which results from encephalopathic crises precipitated by infectious diseases, immunizations and surgery during a finite period of brain development, or develops insidiously without clinically apparent crises. Glutaric aciduria type I is caused by inherited deficiency of glutaryl-CoA dehydrogenase which is involved in the catabolic pathways of L-lysine, L-hydroxylysine and L-tryptophan. This defect gives rise to elevated glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutarylcarnitine which can be detected by gas chromatography/mass spectrometry (organic acids) or tandem mass spectrometry (acylcarnitines). Glutaric aciduria type I is included in the panel of diseases that are identified by expanded newborn screening in some countries. It has been shown that in the majority of neonatally diagnosed patients striatal injury can be prevented by combined metabolic treatment. Metabolic treatment that includes a low lysine diet, carnitine supplementation and intensified emergency treatment during acute episodes of intercurrent illness should be introduced and monitored by an experienced interdisciplinary team. However, initiation of treatment after the onset of symptoms is generally not effective in preventing permanent damage. Secondary dystonia is often difficult to treat, and the efficacy of available drugs cannot be predicted precisely in individual patients. The major aim of this revision is to re-evaluate the previous diagnostic and therapeutic recommendations for patients with this disease and incorporate new research findings into the guideline

    Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains

    Full text link

    Mitochondrial diseases mimicking neurotransmitter defects

    No full text
    [Objectives]: Mitochondrial disorders are clinically heterogeneous. We aimed to describe 5 patients who presented with a clinical picture suggestive of primary neurotransmitter defects but who finally fulfilled diagnostic criteria for mitochondrial disease. [Methods]: We report detailed clinical features, brain magnetic resonance findings and biochemical studies, including cerebrospinal fluid (CSF) biogenic amine and pterin measurements, respiratory chain enzyme activity, and molecular studies. [Results]: The 5 patients had a very early onset age (from 1 day to 3 months) and a severe clinical course. They all showed a clinical picture suggestive of infantile hypokinetic-rigid syndrome (hypokinesia, hypomimia, slowness of reactions, tremor), other abnormal movements (myoclonus, dystonia), axial hypotonia, limb hypertonia, feeding difficulties, and psychomotor delay. Abnormal CSF findings among the 4 patients without treatment included low levels of homovanillic acid (HVA) in 3 patients, with associated low 5-hydroxyindoleacetic acid (5-HIAA) concentrations in two of them. Absent or mild and transitory improvement was observed after treatment with l-dopa. A diagnosis of mitochondrial disorder was finally made due to the appearance of hyperlactacidemia, diverse respiratory chain defects, and multisystemic involvement. [Conclusions]: Secondary neurotransmitter disturbances may occur in mitochondrial diseases. Differential diagnosis of hypokinetic-rigid syndrome presenting in infancy could also include paediatric mitochondrial disorders. © 2008 Mitochondria Research Society.This work was supported by FIS Grant PI051318 and CIBER-ER (ISC-III). S. Duarte is the recipient of a grant from the Portuguese Neurological Society.Peer Reviewe

    Disorders of neurotransmission

    No full text
    This chapter deals primarily with inborn errors of neurotransmitter metabolism. Defects of their receptors and transporters – and disorders involving vitamine B6 (pyridoxine) and its derivative, pyridoxal phosphate, a co-factor required for the synthesis of several neurotransmitters – are also discussed. Three defects of GABA catabolism have been reported: GABA transaminase deficiency(which is very rare, severe and untreatable), succinic semialdehyde dehydrogenase (SSADH) deficiency, and homocarnosinosis (Fig. 29.1)

    Behavioural and emotional problems, intellectual impairment and health-related quality of life in patients with organic acidurias and urea cycle disorders

    Full text link
    BACKGROUND Organic acidurias (OADs) and urea cycle disorders (UCDs) are inborn metabolic disorders with a risk for acute and chronic metabolic decompensation resulting in impairments of the central nervous system and other organ systems. So far, there is no systematic study of intellectual functioning, behavioural/emotional problems and health-related quality of life (HRQoL), and how these domains are connected. METHODS Data of 152 patients with OADs (n = 100) and UCDs (n = 52) from the European Registry and Network of intoxication type Metabolic Diseases (E-IMD) using standardized instruments were compared with normative data. RESULTS Behavioural/emotional problems are increased in OADs or UCDs patients by a factor of 2.5 (3.0), in female asymptomatic carriers of X-linked inherited UCD ornithine transcarbamylase deficiency (fasOTCD) by a factor of 1.5. All groups show similar patterns of behavioural/emotional problems, not different from epidemiological data. Mental disability (IQ ≤ 70) was found in 31 % of OAD, 43 % of UCD, but not in fasOTCD subjects. HRQoL was decreased in the physical domain, but in the normal range. Behavioural/emotional problems were significantly associated with intellectual functioning (OR = 6.24, 95 %CI: 1.39-27.99), but HRQoL was independent from both variables. CONCLUSIONS Patients with OADs and UCDs show increased frequencies of mental disability and behavioural/emotional problems. Profiles of behavioural/emotional problems were similar to epidemiological data. Intellectual disability and behavioural/emotional problems were strongly associated. Patients' HRQoL was in the normal range, possibly compensated by coping strategies of their families. Diagnostics and clinical care of OAD/UCD patients should be improved regarding behavioural/emotional, intellectual and quality of life aspects
    corecore