120 research outputs found

    Enzyme-Responsive Snap-Top Covered Silica Nanocontainers

    Get PDF
    Mesoporous silica nanoparticles, capable of storing a payload of small molecules and releasing it following specific catalytic activation by an esterase, have been designed and fabricated. The storage and release of the payload is controlled by the presence of [2]rotaxanes, which consist of tri(ethylene glycol) chains threaded by α-cyclodextrin tori, located on the surfaces of the nanoparticles and terminated by a large stoppering group. These modified silica nanoparticles are capable of encapsulating guest molecules when the [2]rotaxanes are present. The bulky stoppers, which serve to hold the tori in place, are stable under physiological conditions but are cleaved by the catalytic action of an enzyme, causing dethreading of the tori and release of the guest molecules from the pores of the nanoparticles. These snap-top covered silica nanocontainers (SCSNs) are prepared by a modular synthetic method, in which the stoppering unit, incorporated in the final step of the synthesis, may be changed at will to target the response of the system to any of a number of hydrolytic enzymes. Here, the design, synthesis, and operation of model SCSNs that open in the presence of porcine liver esterase (PLE) are reported. The empty pores of the silica nanoparticles were loaded with luminescent dye molecules (rhodamine B), and stoppering units that incorporate adamantyl ester moieties were then attached in the presence of α-cyclodextrin using the copper-catalyzed azide−alkyne cycloaddition (CuAAC), closing the SCSNs. The release of rhodamine-B from the pores of the SCSN, following PLE-mediated hydrolysis of the stoppers, was monitored using fluorescence spectroscopy

    Corrigendum to ‘Guideline No. 412: Laparoscopic Entry for Gynaecological Surgery’ [Journal of Obstetrics and Gynaecology Canada 43 (2021) 376−389](S1701216320310343)(10.1016/j.jogc.2020.12.012)

    Get PDF
    The authors regret that the print version of this article contained the incorrect reference 51. Reference 51 should have been: Bernante P, Foletto M, Toniato A. Creation of pneumoperitoneum using a bladed optical trocar in morbidly obese patients: technique and results. Obes Surg. 2008 Aug;18(8):1043-6. doi: 10.1007/s11695-008-9497-8. The online version of the article has now been corrected The authors would like to apologize for any confusion this caused. DOI of original article: https://doi.org/10.1016/j.jogc.2021.03.00

    Adaptive Physics-Based Non-Rigid Registration for Immersive Image-Guided Neuronavigation Systems

    Get PDF
    Objective: In image-guided neurosurgery, co-registered preoperative anatomical, functional, and diffusion tensor imaging can be used to facilitate a safe resection of brain tumors in eloquent areas of the brain. However, the brain deforms during surgery, particularly in the presence of tumor resection. Non-Rigid Registration (NRR) of the preoperative image data can be used to create a registered image that captures the deformation in the intraoperative image while maintaining the quality of the preoperative image. Using clinical data, this paper reports the results of a comparison of the accuracy and performance among several non-rigid registration methods for handling brain deformation. A new adaptive method that automatically removes mesh elements in the area of the resected tumor, thereby handling deformation in the presence of resection is presented. To improve the user experience, we also present a new way of using mixed reality with ultrasound, MRI, and CT. Materials and methods: This study focuses on 30 glioma surgeries performed at two different hospitals, many of which involved the resection of significant tumor volumes. An Adaptive Physics-Based Non-Rigid Registration method (A-PBNRR) registers preoperative and intraoperative MRI for each patient. The results are compared with three other readily available registration methods: a rigid registration implemented in 3D Slicer v4.4.0; a B-Spline non-rigid registration implemented in 3D Slicer v4.4.0; and PBNRR implemented in ITKv4.7.0, upon which A-PBNRR was based. Three measures were employed to facilitate a comprehensive evaluation of the registration accuracy: (i) visual assessment, (ii) a Hausdorff Distance-based metric, and (iii) a landmark-based approach using anatomical points identified by a neurosurgeon. Results: The A-PBNRR using multi-tissue mesh adaptation improved the accuracy of deformable registration by more than five times compared to rigid and traditional physics based non-rigid registration, and four times compared to B-Spline interpolation methods which are part of ITK and 3D Slicer. Performance analysis showed that A-PBNRR could be applied, on average, in \u3c2 min, achieving desirable speed for use in a clinical setting. Conclusions: The A-PBNRR method performed significantly better than other readily available registration methods at modeling deformation in the presence of resection. Both the registration accuracy and performance proved sufficient to be of clinical value in the operating room. A-PBNRR, coupled with the mixed reality system, presents a powerful and affordable solution compared to current neuronavigation systems

    Work-Life Balance Starts with Proper Deadlines and Exemplary Agencies

    Full text link
    Diversity, equity and inclusion (DEI) programs can only be implemented successfully if proper work-life balance is possible in Heliophysics (and in STEM field in general). One of the core issues stems from the culture of "work-above-life" associated with mission concepts, development, and implementation but also the expectations that seem to originate from numerous announcements from NASA (and other agencies). The benefits of work-life balance are well documented; however, the entire system surrounding research in Heliophysics hinders or discourages proper work-life balance. For example, there does not seem to be attention paid by NASA Headquarters (HQ) on the timing of their announcements regarding how it will be perceived by researchers, and how the timing may promote a culture where work trumps personal life. The same is true for remarks by NASA HQ program officers during panels or informal discussions, where seemingly innocuous comments may give a perception that work is expected after "normal" work hours. In addition, we are calling for work-life balance plans and implementation to be one of the criteria used for down-selection and confirmation of missions (Key Decision Points: KDP-B, KDP-C).Comment: White paper submitted to the Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033; 6 page

    Solar Physics From Unconventional Viewpoints

    Get PDF
    We explore new opportunities for solar physics that could be realized by future missions providing sustained observations from vantage points away from the Sun-Earth line. These include observations from the far side of the Sun, at high latitudes including over the solar poles, or from near-quadrature angles relative to the Earth (e.g., the Sun-Earth L4 and L5 Lagrangian points). Such observations fill known holes in our scientific understanding of the three-dimensional, time-evolving Sun and heliosphere, and have the potential to open new frontiers through discoveries enabled by novel viewpoints

    An evaluation of the COVID-19 pandemic and perceived social distancing policies in relation to planning, selecting, and preparing healthy meals: an observational study in 38 countries worldwide

    Get PDF
    Objectives: To examine changes in planning, selecting, and preparing healthy foods in relation to personal factors (time, money, stress) and social distancing policies during the COVID-19 crisis. Methods: Using cross-sectional online surveys collected in 38 countries worldwide in April-June 2020 (N = 37,207, Mage 36.7 SD 14.8, 77% women), we compared changes in food literacy behaviors to changes in personal factors and social distancing policies, using hierarchical multiple regression analyses controlling for sociodemographic variables. Results: Increases in planning (4.7 SD 1.3, 4.9 SD 1.3), selecting (3.6 SD 1.7, 3.7 SD 1.7), and preparing (4.6 SD 1.2, 4.7 SD 1.3) healthy foods were found for women and men, and positively related to perceived time availability and stay-at-home policies. Psychological distress was a barrier for women, and an enabler for men. Financial stress was a barrier and enabler depending on various sociodemographic variables (all p < 0.01). Conclusion: Stay-at-home policies and feelings of having more time during COVID-19 seem to have improved food literacy. Stress and other social distancing policies relate to food literacy in more complex ways, highlighting the necessity of a health equity lens
    • …
    corecore