

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 01, 2019

A Novel Algorithm for Flow-Rule Placement in SDN Switches

Kentis, Angelos Mimidis; Pilimon, Artur; Soler, José; Berger, Michael Stübert; Ruepp, Sarah Renée

Published in:
Proceedings of the 4th IEEE International Conference on Network Softwarization

Link to article, DOI:
10.1109/NETSOFT.2018.8459979

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Kentis, A. M., Pilimon, A., Soler, J., Berger, M. S., & Ruepp, S. R. (2018). A Novel Algorithm for Flow-Rule
Placement in SDN Switches. In Proceedings of the 4th IEEE International Conference on Network Softwarization
IEEE. DOI: 10.1109/NETSOFT.2018.8459979

https://doi.org/10.1109/NETSOFT.2018.8459979
http://orbit.dtu.dk/en/publications/a-novel-algorithm-for-flowrule-placement-in-sdn-switches(450840ce-9111-43ca-b3c7-51353bfa9787).html

A Novel Algorithm for Flow-Rule Placement in SDN
Switches

Angelos Mimidis-Kentis*, Artur Pilimon*, Jose Soler, Michael Berger and Sarah Ruepp
Department of Photonics Engineering

Technical University of Denmark
Lyngby, Denmark

{agmimi, artpil, joss, msbe, srru}@fotonik.dtu.dk

Abstract— The forwarding rules, used by the legacy and SDN
network devices to perform routing/forwarding decisions, are
generally stored in Ternary Content Addressable Memory
(TCAM) modules, which offer constant look-up times, but have
limited capacity, due to their high capital and operational costs,
high power consumption and high silicon footprint. To counter
this limitation, some commercial switches offer both, hardware
and software flow table implementations, termed hybrid flow
table architecture in this paper. The software-based tables are
stored in non-TCAM memory modules, which offer higher
capacity, but with slower lookup times. In addition, these
memory modules are limited in terms of how many requests they
can serve per time unit. Thus, exceeding this threshold will lead
to packet loss in the network. This paper proposes a novel
placement algorithm, which dynamically decides whether a new
flow rule should be placed in a hardware (expensive) or a
software (cheap) table. The placement decisions are based on a
number of criteria with the goal to increase the utilization of the
software-based table, without introducing performance
degradation in the network in terms of significant delay and
packet loss. The performance of the placement algorithm was
evaluated through experimental measurements in a testbed,
which comprises a hybrid SDN switch, a server performing
traffic generation and a server hosting the SDN controller. The
results indicate that, by limiting the maximum allowed
processing capacity of the software table, the number of
accommodated flows is significantly increased, while bounding
any excessive delays and avoiding packet loss.

Keywords— SDN, Flow tables, TCAM, OpenFlow Pipelines

I. INTRODUCTION
Regardless of the applied control plane paradigm

(centralized or distributed), network devices make routing
decisions based on rules that reside within one or more device-
local rule tables. Whenever a packet arrives in a
network/forwarding device, its headers are cross-checked
against the rules that populate those tables and depending on
the result (match or no match) one or more actions might be
applied to the packet by the device (e.g. forward, drop). The
granularity with which the packets are examined (i.e. the
number of headers checked), and the implementation and/or
number of tables involved, can vary between different devices
and networking paradigms.

Given the need for fast packet processing, most physical
network devices implement their forwarding tables using
Ternary Content Addressable Memory (TCAM) modules,
which provide O(1) lookup times (in terms of clock cycles)
[1]. That means that regardless of the number of entries in the
table(s), finding a match (or not) will always take the same
amount of time. This trait is highly desirable; since apart from
generally fast search times, it also provides a high level of
determinism (all look-ups take always the same time).
However, TCAM modules are expensive, have high power
consumption and a large silicon footprint [1]. In order to cut-
down on the associated Capital and Operational Expenditures
(CAPEX, OPEX), network device vendors limit the size of the
TCAM modules, which results in reduced number of flow-
rules to be stored [1].

The Software Defined Networking (SDN) paradigm
offers a greater granularity for defining flow-rules (more
packet headers can be defined as match fields), when
compared to the traditional network paradigm. This approach
provides increased flexibility when designing applications for
SDN Controllers (SDNCs), but requires more memory space
per flow rule. Given the limited size of the flow tables, this
characteristic can limit the applicability of SDN in network
deployments with extensive number of flows. To resolve this
issue, both SDN-enabled device vendors and SDNC
application developers (from the industry and the academia)
have attempted to increase the effective capacity of the flow
tables. With regards to vendors the approach is to provide an
additional flow table implementation in their devices based on
software. This can offer increased flow-rule capacity by
sacrificing search performance (exceeding O(1)). On the other
hand, SDNC developers have mostly focused on developing
flow-rule aggregation mechanisms, which allow the network
devices to process more traffic with the same number of flow-
rules. The drawback of this approach is that aggregation of
network flows reduces the processing granularity offered by
SDN. These approaches are covered in more detail in the
related work section of this paper.

This work builds on the software table implementations,
by proposing a dynamic and intelligent flow-rule placement
algorithm, executed in the SDNC. The target is to maximize
the number of flow-rules residing in a switch, while also

limiting the negative effects (e.g. increased delay, packet loss),
imposed by the memory modules (hardware or software).

The remainder of this paper is structured as follows.
Section II provides an overview of the related research work
based on flow-rule placement and flow aggregation
algorithms. Section III discusses the available switch
architectures, focusing on their flow table implementations
(pure hardware, pure software and hybrid). Section III
discusses flow table pipeline implementations and how they
can affect the performance of flow-rule placement algorithms.
Section IV presents the proposed flow placement algorithm
for hybrid flow table architectures. Section V describes the
experiments conducted to evaluate the proposed algorithm,
together with the collected results. This paper is concluded
and possible future steps are outlined in Section VI.

II. RELATED WORK
Efficiency of the flow rule installation process in SDN

switches has been a matter of high research interest in the
SDN community. Different approaches to manage the TCAM
space utilization have been proposed and evaluated, primarily
targeting the flow rule compression or aggregation [2 – 5], or
flow rule caching and placement algorithms [6 – 12]. Hence,
we further provide a summarized yet comprehensive overview
of the relevant literature findings.
A. Flow rule aggregation

Flow rule aggregation aims at reducing the flow table size
in the network nodes by substituting a set of rules with
overlapping matching criteria with a more generalized flow
rule, while still being able to realize a corresponding network
policy. The variants of this procedure are commonly referred
to as traffic flow aggregation [2][3] and flow table
compression [4][5]. An approach for dynamic flow
aggregation was proposed in [2], where a dynamic traffic
aggregation decision is made based on two criteria: the
computed network path of the flows and their DSCP
(Differentiated Services Code Point) marks. The traffic flow
aggregates are identified by adding unique per-flow-aggregate
VLAN (Virtual Local Area Network) tags. However, the
performance of the aggregation service was measured in a
simulated network with software switches (on a single
physical server) and a limited number of traffic flows. Rifai et
al. in [4] proposed a framework, called MINNIE, for flow
table compression using wildcard rules and shortest-path
routing using adaptive metrics (link, router load) for load
balancing. The compression mechanism produces a set of
three tables, using compression by source, by destination and
by default flow rule. The smallest resulting compressed table
is chosen for the routing decisions. Experimental
measurements, described in [4], were conducted , on a testbed,
containing a commercial SDN switch with a hybrid (software-
hardware) flow table design. The results show that even when
using this compression technique, the first packet (of each
flow) delay increases by a factor of up to 20 and the average
matching delay for the remaining packets results in 6-fold
increase when installing the flow rules in software as
compared to hardware (TCAM). An incremental flow table

aggregation mechanism is discussed in [5], where the authors
propose a set of two algorithms, namely FFTA (Fast Flow
Table Aggregation) scheme applied to non-prefix (TCAM-
based) flow rules. An offline version of FFTA is used for
initial partitioning of the flow rules, applying prefix
aggregation and then merging together the rules with a single
differing bit in an iterative manner. The online version allows
performing fast incremental rule updates with a small loss of
compression ratio.
B. Flow rule placement algorithms

This category of flow rule distribution methods includes
flow rule caching and rule placement in general. In [6][7]
authors present a design of a hybrid hardware-software switch
abstraction with arbitrarily large flow rule tables. This is
achieved by using a complex rule caching mechanism,
consisting of a rule placement algorithm, called CacheFlow, a
Cache master module and a set of elastic shared software
switches. The rule placement algorithm constructs a rule
dependency tree and caches the most popular flow rules
(serving a large volume of “cache hit” traffic) in the TCAM,
but redirects smaller amount of “cache miss” traffic to be
handled by the software switches. If there is no matching rule
found either, the controller is contacted as the last instance for
a new flow rule installation. This system allows achieving
several important goals: a) avoid cache replacement without
taking into consideration possible complex flow rule
dependencies (pattern overlaps); b) avoid flow compression to
preserve the OpenFlow semantics, i.e., per-flow-rule traffic
counts; c) reduce the size of the long chains of dependent rules
by “splicing” such chains to cache smaller groups of rules [7].
Another flow rule caching optimization method, called
CRAFT is introduced in [8]. This mechanism uses a two-stage
pipeline to eliminate the need for slow processing of long rule
dependency chains, to reduce the possibility of having
overlapping flow rules in the space-limited cache. The cache
expansion problem is solved by weighted splitting of large
flow rules into sub-rules and only caching the sub-rules with
the highest weight (hit ratio). This scheme is reported to be
30% more efficient as compared to the CacheFlow [7].

Guo et al. in [9] propose a novel traffic forwarding
scheme coupled with reactive flow rule placement, called
JumpFlow. The forwarding module of the algorithm uses the
VLAN identifier (VID) field of the packet header to carry the
routing information, while the rule placement module divides
the complete flow’s forwarding information into several
blocks and installs them on a selected subset of contact
switches (along the flow’s path). The objective of the reactive
module is to maintain low and balanced flow table (TCAM)
utilization by applying constraints of flow table space and the
number of contact switches to use, with an optimal solution
achieved using Integer Linear Programming (ILP).

In [10], the authors employ a flow rule partition and
allocation strategy, where the flow rules in heterogeneous flow
tables are split and grouped into sub-tables (stored in a virtual
small TCAM block), which are then distributed across the
entire network as uniformly as possible. Only the hardware
(TCAM) flow tables are targeted. The main goal of this

approach is to divide all flow rules into disjoint sub-tables,
putting the rules that implement the same policy or have
dependency in the same sub-tables.

A novel solution to optimize the TCAM memory usage is
proposed in [11], by implementing a Memory Management
System (MMS) component for the SDNC. It performs
memory swapping by temporarily moving the least used flow
rules from the TCAM space to the external database (residing
in the MMS of the SDNC). Then, when the load of the TCAM
table decreases, the MMS automatically restores the swapped-
out rules upon demand (e.g., a new packet matching one of
these rules arrives).

Other solutions, e.g., as in [12], focus on flow-driven rule
caching optimization, where authors achieve a high cache hit
ratio by prefetching (caching over all the switches along a
flow’s path) the flow rules that need to be cached for fast path
processing and setting a timer with an estimated time of the
next rule “hit” event. This is achieved by analyzing the routing
paths of each flow and its detected traffic pattern.

Our proposed rule placement approach differs from related
work in several ways, even though some conceptual
similarities with the discussed works are present. First, we are
not targeting the flow table compression to retain the
possibility to obtain per-flow-rule traffic statistics and avoid
introducing any need for recalculating the optimal number of
compressed rules, which can be an NP-hard task, since we are
considering a dynamic reactive flow rule migration. Second,
unlike in the case of a CacheFlow [6][7] approach, where
additional processing overhead is introduced by embedding
the software switches (with additional pipeline processing)
and extra coordination component (cache master), we utilize
the properties of the hardware and software tables and keep
the main algorithmic logic in the SDNC. Third, we are not
modifying the packet headers to perform flow grouping by
similar properties (e. g., packet rates), but instead we are using
a predefined mapping of flow group rates to transport protocol
destination ports. Finally, our work is conceptually related to
[11], since we are swapping the flow rules between different
memory types, but we retain this process within the memory
space of the switch, rather than exporting the rules externally
that incurs varying delays.

III. SWITCH ARCHITECTURES
When evaluating the performance and utilization of flow

table implementations, there are three architectural
components that must be taken into consideration. These are:

• How the flow tables are implemented (pure hardware,
pure software or hybrid)

• How the flow tables within a single device are
interconnected; a mechanism referred to as the packet
processing pipeline of the device.

• How flow rules are allocated between the different flow
tables; a mechanism referred to as a flow rule placement
algorithm.

A. Flow table Architectures
There are three means to implement flow table

architectures. They can be realized using pure hardware
resources (e.g. TCAM), pure software resources or in a hybrid
combination of these two, where some tables are implemented
in hardware and some in software.

Pure software flow table implementations are almost
exclusively encountered in virtual switches (e.g. OpenvSwitch
[13]). Virtual switches are mostly used in Data Center (DC)
environments, to forward traffic between virtual machines or
containers, which reside within a single physical node.
Because of their locality these switches handle only a limited
number of traffic flows, hence the associated look-up
operations do not impose significant performance degradation.
Pure hardware implementations are mostly found in physical,
legacy (non-SDN) network devices. Hybrid implementations
are a relatively new approach, most commonly found in SDN-
enabled network devices. This is because, through the
programmability offered by the SDNC, dynamic flow rule
placement algorithms can be implemented and enforced in the
network infrastructure.

As summarized in Table 1, each flow table
implementation has several benefits and drawbacks. Pure
hardware implementations offer a fast (and constant) per
packet look-up and also a high processing capacity, meaning
they can handle traffic of high packet rates. However, their
flow table capacity is limited, due to the CAPEX and OPEX
costs associated with the TCAM modules. Pure software
implementations on the other hand, offer a much higher flow
table capacity, but at the cost of slow look-up and low
processing capacity. Since they do not require a flow table
placement algorithm, both hardware and software
implementations have a relatively low complexity. Finally,
hybrid implementations (if correctly utilized) can offer high
flow table and processing capacities, as well as fast look-ups.
The only disadvantage is the need for a placement algorithm,
which can increase implementation complexity. However, in
this paper we argue that if the placement algorithm is of a
simple and efficient design, the benefits can out-weight the
introduced complexity.

Table 1: Comparison of flow table implementations

Type of
Implementation

Flow table
Capacity

Lookup
Speed

Processing
Capacity

Complexity

Pure Hardware low high high low
Pure Software high low low low

Hybrid high high high high

B. Packet Processing Pipelines
Within the context of the SDN paradigm, a packet

processing pipeline refers to the logic of the internal packet
processing within a network device. There are two approaches
for designing flow table pipelines, using a single flow table in
which to store all flow rules or using multiple interconnected
tables and store rules in them based on a set of criteria. The
approach is dependent on both the underlying capabilities of
the network device, but also on the protocol used for the
control plane between the SDNC and the device (e.g.

OpenFlow 1.0 does not support multi-table pipelines but
OpenFlow 1.3 does). When considering a single table pipeline,
all incoming packets in the network device are cross-checked
against this table. In case there is a match, the packet is
processed based on the actions associated with the matching
rule; if there is no match then the packet is sent to the SDNC.
In a multi-table pipeline, flow processing can be composed of
multiple flow rules, spread across the different tables. This
means that an incoming packet can be processed by multiple
tables, allowing for more complex action sets to be enforced.
Using a single flow table offers a lower implementation
complexity, but using multiple flow tables allows for more
efficient and dynamic flow table utilization. Figure 1
illustrates the two pipeline approaches.

Table 0

SDNC

Action
SDN Switch

Table 0

SDNC

Action

SDN Switch

Table 1 Table n

No match

No Match No Match MatchP P

P
Match P

a. Single Table Pipeline

No match

Match

b. Multi Table Pipeline
Figure 1: Pipeline models

IV. PROPOSED PIPELINE AND PLACEMENT ALGORITHM
As mentioned, hardware flow tables offer high and

constant service rates (packets per second they can process),
but are limited in the number of flow rules they can
accommodate. On the other hand, software flow tables can
accommodate more flow rules but have limited service rates.
Additionally, for software tables the time it takes to service a
request is directly related to the current number of flow rules
in the table, which implies that their performance deteriorates
as the number of flow rules, present in the software table,
increases. This section presents the design and logic of the
proposed flow rule placement algorithm and the selected
packet processing pipeline. Both the placement algorithm and
the pipeline, were implemented with the aforementioned
benefits and drawbacks in mind.

A. Packet Processing Pipeline
In the SDN paradigm and with OpenFlow [14] as the

control plane protocol, when a switch receives a packet, it
cross-checks it against its flow rules for a match and then
applies the associated actions to it. The outcome, however, is
dependent not only on the defined action set, but also on how
the pipeline processing within the switch is implemented. In
this work, it was decided to process the incoming packets first
at the hardware table and then the software table. This
approach removes unnecessary processing stress from the
software table as it is only accessed when a match is not found
in the hardware table. If neither the hardware of software table
holds a matching flow rule, then the switch will ask the SDNC
for further instructions with an OpenFlow PacketIn message.

Upon receiving the PacketIn message, the SDNC will process
it and decide how the packet should be treated in the network
(f. ex. forwarded, dropped, modified etc). The means through
which, the SDNC processes the request and decides on the
packet treatment is out of the scope of this paper. After the
packet treatment has been decided by the SDNC and before it
is enforced in the network (by means of OpenFlow FlowMod
messages), the proposed flow rule placement algorithm takes
place. The implemented pipeline is illustrated in Figure 2.

Hardware Table

SDNC

ActionSoftware Table

No match

No MatchP P
Match

SDN switch Match

Figure 2: Proposed pipeline processing

B. Flow Rule Placement Algorithm
Upon receiving a request from a switch, the SDNC will

query a local statistics database and retrieve the number of
flow entries that populate the switch’s hardware flow table.
The information contained in the database is collected by
means of a polling mechanism, which periodically retrieves
switch related statistics. Even though the SDNC is the only
entity managing the network, it is not safe to assume that it
can keep track of the number of active flow entries in each
switch without such a polling mechanism. This is because
some of the flow rules in the switches might expire and be
removed without the SDNC being notified (e.g., the SDN
switch might not send an OpenFlow FlowRemoved message
to the SDNC). By setting a high polling frequency, the
accuracy of the collected statistics can be set to acceptable
standards, at the expense of extra overhead in the interface
between the SDNC and the network infrastructure.

Upon retrieving the number of flow rules in the hardware
table, the algorithm compares the value against a predefined
threshold. If the number of flow rules is below this threshold,
then there is no imminent danger of overflowing the hardware
table. Since the performance of the hardware table is superior
to the software table, the flow rule is added to the hardware
table. If the number of flow rules is greater than the defined
threshold, then there is a danger that inserting the flow rule in
the hardware table will cause a table overflow and disrupt
network connectivity (e.g., packet drops, SDN switch crash).
To mitigate this danger, the placement algorithm triggers a
flow rule migration process from the hardware table to the
software table. There are two elements of this migration
process that need to be addressed here, namely how many
flow rules are migrated each time the process is triggered, and
which flows are selected for migration. Based on the issues
addressed above, Figure 3 illustrates the proposed algorithm in
the form of a flow chart. Table 2 lists the different variables
used in the chart.

With regards to how many flows to migrate, three
approaches have been identified. The algorithm could migrate
one flow, migrate K flows (K could be either a static
predefined value or dynamic based on the current situation), or

finally the algorithm could migrate as many flows as possible
until the service rate of the software table is saturated. Each
approach has its own benefits and drawbacks which are
presented below.

Start PACKET_IN event

#hwRules
<

hwThr

Install flow rule
in HW table

YES
Find the K rules with
the lowest pps flows.

Add them to F

NO

Copy R to SW
table

Delete R from
HW table

Install new rule
in HW table

Stop

F empty
Get next rule R from F

NO

 R to SW table
exceeds swThr

YES

YES

NO

Retrieve #hwRules

#hwRules
<

hwThr

YES

NO
Figure 3: Flow chart of the flow rule placement algorithm

Table 2: List of flow chart variables
Variable Description

#hwRules The number of flow rules existing in the hardware table of
the switch.

hwThreshold The threshold, expressed as number of flow rules, which
identifies a critical point after which the hardware table is
prone to table overflow.

swThreshold The threshold, expressed as packets per second, which
identifies a critical point after which the software table can
become unresponsive.

F A list which holds all flow rules considered for migration.
R A single flow rule considered for migration
K The static or dynamic value, denoting how many flow rules

to consider for migration on every iteration.
pps Packet per second rate of a flow.

Migrating as many flow rules as possible, reduces the

instances in which the threshold is reached, hence limiting the
number of times the migration process is initiated. However,
this approach always leads to the full utilization of the
software table, which will hinder network performance due to
increased delays for the migrated flows. In contrast, migrating
just one flow rule whenever the algorithm is triggered
minimizes the utilization of the software table. However,
unless some flow rules from the hardware table expire or are
removed by the SDNC, this approach requires one iteration of
the placement algorithm for each new flow arriving at the
switch. This makes the algorithm more computationally
expensive, as well as it increases the response time of the
SDNC to service requests from the network. The final
approach and the one selected for this work, is to migrate K
flow rules per iteration of the flow rule placement algorithm.
Doing so provides the benefits of both previous scenarios,
since the number of times the algorithm is triggered is limited
but so is the utilization of the software table. It is important to
stress that independent of the selected approach (1 flow rule,
K flow rules, max flow rules), a flow rule should be migrated
to the software table if and only if, the resulting cumulative
packet per second rate of the software table is under a

predefined threshold. Exceeding this threshold means
exceeding the processing capabilities of the software table,
leading likely to disruptions in network connectivity. If that is
the case and the hardware table can accommodate the flow, it
will be added there. Else the flow will be dropped (neither the
hardware nor the software table can accommodate it).

Based on the correlation between service requests
(packets per second) and service times (time it takes to find a
matching flow rule) for software tables, the proposed
algorithm selects the K flows with the lowest packet rate for
migration. This way the utilization of the software table is kept
to a minimum. Most SDNCs, offer flow level statistics which
include per flow packet rates, however, the accuracy of these
statistics is very coarse as they are based on periodic polling
with an interval at the order of seconds. Given that the packet
rate of a flow can vary significantly during its lifetime, using
these statistics can lead to incorrect assumptions on the flow’s
packet rate. Migrating a flow rule based on a wrongly assumed
packet rate can lead to over provisioning of the software table
which, in turn, can lead to either packet losses or excessive
delays. The means, through which the packet rates of flows
are identified, are out of the scope of this paper. However,
some possible solutions are either the increase of the polling
frequency from the SDNC to sub-second values or the use of
network analytics techniques (e.g., sFlow). For the proof of
concept implementation of the algorithm, the packet rates of
each flow are considered constant and are also identifiable
from the SDNC by packet header values, where each
destination UDP port implies a specific packet rate.

To avoid network connectivity disruptions for the flows
of the migrated flow rules, a migrate-then-delete approach was
selected. Since the hardware table resides first in the pipeline
processing, this model assures that there will always be at least
one active copy of the flow rule within the switch. The
drawback of this approach is that temporarily there will be two
identical flow rules in the switch, one on each flow table.
However, this only holds true for a very limited amount of
time, since the migration process is executed relatively fast.
Figure 4 illustrates an example of a flow rule migration
instance for K = 3.

<Rule 1>, 100 pps
<Rule 2>, 200 pps
<Rule 3>, 4 Kpps

<Rule 4>, 10 Kpps
<Rule 5>, 5 Kpps
<Rule 6>, 3 Kpps

HW Table SW Table
<Rule 7>
<Rule 8>
<Rule 9>

<Rule 10>

Threshold

<Rule 3>, 4 Kpps
<Rule 4>, 10 Kpps
<Rule 5>, 5 Kpps

HW Table SW Table
<Rule 7>
<Rule 8>
<Rule 9>

<Rule 10>
<Rule 1>
<Rule 2>
<Rule 6>

<Rule 1>, 100 pps
<Rule 2>, 200 pps
<Rule 3>, 4 Kpps

<Rule 4>, 10 Kpps
<Rule 5>, 5 Kpps
<Rule 6>, 3 Kpps

HW Table SW Table
<Rule 7>
<Rule 8>
<Rule 9>

<Rule 10>
<Rule 1>
<Rule 2>
<Rule 6>

a. Threshold Reached b. Flow Rules Migrated

c. Old rules deleted
Figure 4: Example of the flow rule migration process, with K = 3

The flow rules 1, 2 and 6 are migrated since their
corresponding flows have the lowest packet rates. In (a), the
SDNC identifies that the threshold for the hardware table has
been reached so it will initiate the migration process. In (b) the
flow rules 1, 2 and 6 are migrated to the software table and in
(c) they are deleted from the hardware table.

The last element that needs to be addressed is how the
threshold values for the hardware (number of rules) and
software (packets per second) tables are set by the algorithm.
Defining the threshold for the software table is
straightforward, since the packet service capacity of the
software table is known from the device’s datasheet and is
independent of any variables (e.g. packet size). Defining a
threshold for the hardware table on the other hand is a more
complex task. This is because the number of rules that a
hardware table can accommodate is not a static value but can
vary depending on how coarse/granular each installed flow
rule is. The more header fields are defined for matching in a
flow rule, the more space this flow rule occupies in the table.
Based on this observation, there are two approaches that can
provide a secure threshold value. The first is to calculate
exactly how many bytes each flow rule occupies and then sum
all the values together; the sum can then be compared against
the total space provided by the hardware table. However, this
approach implies knowledge of how much space each unique
header field will occupy, information not necessarily available
to the SDNC. Another approach, and the one selected for the
PoC implementation, is to follow a worst-case scenario in
which it is assumed that all flow entries occupy the same
amount of space, equal to the case in which all header fields
are defined for matching. This approach has the obvious
drawback of limiting the effective size of the hardware table,
but due to its simplicity it was selected for the PoC. As a
future step, a more robust mechanism for calculating the
available space should be implemented.

V. VALIDATION AND RESULTS
To validate the functionality of the implemented PoC

algorithm, a set of experiments was conducted on a physical
SDN testbed. The testbed comprised a server for generating
and receiving traffic flows, a physical SDN switch with hybrid
flow table implementation and finally a server hosting the
SDNC [15] in which the flow rule placement algorithm was
executing. The server, responsible for generating the traffic
flows, was equipped with 2-port NIC with one port for
transmitting and one for receiving the traffic flows. Both
NIC’s ports were then connected to the SDN switch. The
reason for using a single server for sending and receiving
traffic flows was the need for a common reference clock for
the delay measurements. Finally, the SDN switch was
connected to the SDNC though the management interface.
Figure 5 illustrates the testbed setup that was used.

The scope of the presented experiments is threefold. First,
to validate that the flow rule placement algorithm works as
intended by migrating flow rules from the hardware to the
software table, based on the defined threshold values. Second,
to evaluate, if the algorithm introduces any performance

degradation in the network, when compared to the default
scenario, where all flows are placed in the hardware table.
Third, to observe the combined impact of higher flow pps
rates when migration is activated, while keeping the packet
loss as low as possible to ensure accurate latency
measurements. Due to the limitations imposed by the traffic
generation software, it was not possible to saturate the
capacities of the hardware and software tables. To mitigate
this issue, the SDNC was utilized to “virtually” cap the
capacities of both tables to lower values. For the hardware
table the limit was set to 99 flow rules and for the software
table to either 400 or 600 packets per second (pps) depending
on the experiment, defined as follows.

Figure 5: Testbed

The following traffic generation experiments were
designed with the scope of stressing the (capped) capacities of
both the hardware and software tables. There are two
experiments with 150 unique traffic flows in each, with the
flows evenly spread amongst three packet rate groups. In the
first scenario, there are 50 flows with 10 pps, 50 with 20 pps
and 50 with 30 pps. The second scenario is comprised of 50
flows with 15 pps, 50 with 30 pps and 50 with 45 pps. The
capacity of the software table was limited to the 400 pps for
the first scenario and to 600 pps for the second scenario, with
the intent to be able to reach the overflow state for the
software table in both scenarios. The traffic flows were
sequentially generated in a round robin fashion from each
packet rate group within each scenario. Execution of the
experiments resulted in the expected behavior. Initially, all
flow rules were installed in the hardware table, however when
the hardware threshold was reached (set as 95% of the
capacity), then the migration process was initiated, and a set of
flows to migrate from the hardware to the software table was
iteratively being chosen. This process was repeated until the
processing capacity of the software table was saturated, and
the migration process stopped. After this point the hardware
table utilization reached 100% of capacity, and all subsequent
flows were rejected.

To evaluate the performance of the algorithm the same
experiments as before were repeated with and without the
placement algorithm enabled. In the first set of experiments,
which will be referred to as baseline scenario, only the
hardware table is used to serve the arriving flow processing
requests. The second set of experiments will be referred to as
flow migration scenario and are used to benchmark the

Traffic Server

Data Traffic

Data Traffic

OpenFlow

SDN switch

SDNC

performance (in terms of delay) of the flow rule placement
algorithm.

It is important to note that the timescales (on the
horizontal axes) of the graphs, presented further, are relative
per-flow timescales, rather than on a single universal timescale
for all the flows. Hence, the last plotted value on any per-flow
timescale denotes the total flow duration in seconds. However,
this aspect does not affect our analysis, since we are not
plotting the delays of groups of flows in a single graph as a
function of time.

The results for the baseline scenario are presented in
Figure 6 and Figure 7. As it can be seen in Figure 6, the
distribution of the average per-flow delay for both packet rate
sets (10-20-30 pps and 15-30-45 pps) in the baseline scenario
is very similar to a uniform pattern with the mean value
around 0.175 ms for the first set, 0.179 ms for the second set,
and the average maximum delay not exceeding 0.2 ms. Such
performance is expected, because the flow rules are placed
only in the hardware table (which offers constant lookup
times); if there is no remaining space to accommodate a new
flow, the packets of that flow will be dropped. This is the
behavior illustrated in Figure 6, where there are 99
accommodated flows (out of 150), adhering to the virtually
imposed hardware table capacity limit (99 flow rules).

In addition, as it can be seen in Figure 6, there is a
tendency of a near-linear latency increase within each packet
rate group (of both sets) with the increase of the number of
accommodated flows. This can be attributed to the increase of
traffic load over time. Figure 7 shows the per-packet delay
distribution of a sample flow from the first set of group rates
with the mean (µ) and standard deviation (σD) values. The
results show that per packet delay variation (with σD= ± 0.079
ms) of a flow, served by the hardware table, is not
experiencing significant fluctuations over time and remains
relatively stable. This is a behavior that meets the expectations
of a flow installed in the hardware table.

With regards to the flow migration scenario, the
distributions of the average per-flow delays of the flows from
the first set of packet rate groups (10-20-30 pps) for both
scenarios (baseline and migration) are compared in Figure 8.
There are 44 migrated flows that now experience higher
average delays, since they are served (for a portion of their
lifecycle) by the software table, as compared to the other
flows, which were not affected by the migration process and
were served only in hardware. In this experimental setting
with predefined parameters (e.g., the total number of flows
defined, the number of flows to consider for migration in each
iteration, the capacity thresholds of the flow tables), the
migrated flows belong only to the lowest 10 pps group since
the accumulated pps rate of the group (500 pps) exceeded the
software threshold limit (400 pps). For the remaining flows
the impact is similar to the baseline scenario. This indicates
that the placement algorithm does not affect the performance
of the non-migrated flows. This is also confirmed in Figure 9,
where the per-packet latency distribution of a sample (non-
migrated) flow does not change significantly over time and is
comparable to the baseline case in Figure 7.

Figure 6: Baseline scenario. Average per-flow delay for 2 rate group sets

Figure 7: Baseline scenario. Per-packet delay of a sample flow

Figure 8: Baseline vs Flow migration scenario. Rate group set: 10-20-30 pps

Figure 9: Per-packet delay of a sample non-migrated flow (migration enabled)

Considering the total number of accommodated flows, it
is increased to 138 when migration is enabled, as compared to
99 in the baseline scenario, while the remaining flows were
rejected as expected, because the capacities of both flow tables
were fully utilized.

Figure 10: Per-packet delay of a migrated flow (10-20-30 pps set)

Figure 11: Per-packet delay of a migrated flow (a fragment of Figure 10)

Figure 12: Baseline vs Flow migration scenario. Rate group set: 15-30-45 pps

Another aspect is how the packet processing delay
changes when a flow rule is migrated. Figure 10 presents the
evolution of per-packet processing delay of a sample migrated
flow, and Figure 11 shows a zoomed-in fragment of it. We can
observe a sharp increase of latency (the migration point in
Figure 11) after the migration process is completed, since the
processing is handled in the software table from there on. The
impact of software processing is clearly seen in the form of
stochastic latency spikes that can be a result of having shared
interrupt-based processing in the CPU (Central Processing
Unit) and memory buffer resources of the switch. The delay
evolution pattern of all the migrated flows of this set of group
rates is identical, with a sharp latency jump, higher delay
variance and spikes after the migration.

The per-flow delay measurement results for the flows
from the second set of packet rate groups (15-30-45 pps) for
both scenarios (baseline and flow migration) are depicted in
Figure 12. The distribution of the average delay of the non-
migrated flows has identical pattern as compared to the

baseline case. The increase of per-flow-group packet rates by
~ 33.33% resulted in a corresponding threefold increase of the
average per-flow delays, and the increase pattern is observed
to be non-linear.

The latency evolution of the individual migrated flows
from this rate group set indicates that there is a significantly
larger density of latency spikes with an area of excessive high
magnitude spikes, reaching up to 100 ms. This behavior is
presented in Figure 13 and its enlarged fragment in Figure 14.
Such packet processing effects were observed in all the
migrated flows and appeared at relatively the same (universal)
points in time; these results indicate that larger number of
packets are experiencing performance degradation due to
higher load on the CPU-based subsystem of the switch.

It is important to emphasize that the observed spikes in
delay appear after all the flows have been installed in the
switch by the SDNC (in both the hardware and software
tables), at which point the SDNC was not issuing any flow-
rule-related actions in the switch. Thus, this behavior is purely
associated with the switch, and not with the SDNC and/or the
implemented placement algorithm.

The observed general variation of the measured delay,
present in both scenarios, can be a consequence of the inherent
hardware processing effects, e.g., clock drift and clock skew
of the traffic generation server, affecting the packet
timestamping accuracy, and internal memory buffer limits as
well as packet queueing delays in the SDN switch.

Figure 13: Per-packet delay of a migrated flow (15-30-45 pps set)

Figure 14: Per-packet delay of a migrated flow (a fragment of Figure 13)

As illustrated in Figure 8 and Figure 12, there is a trend of
a sequential increase in average delays for the migrated flows,
as more and more flows are accommodated. During the

migration process the flow rules, to be migrated, are retrieved
by means of SDNC-specific functionality, without the
opportunity to order them in a custom way. Assuming that the
last flow installed in the hardware table of the switch is the
first flow retrieved from the list provided by the SDNC, the
trend shows that the flows that spent most of the time in the
hardware table are experiencing the lowest average delays.
This is a behavior that follows the performance characteristics
of the two table implementations. Finally, we compared the
distributions of the per-flow packet loss in both scenarios, and
the results show that no packet loss was experienced.

It is important to emphasize that, since we had to virtually
cap the processing capacity limits of the hardware and
software tables, due to the limitations of our testbed setup
(traffic server), we were not able to reach the effective
(maximum) processing capacity limits of these tables.
Therefore, if the real processing limits would be reached, the
results could evolve in a different (non-linear) way, and the
performance trends presented in this work, would have to be
adjusted accordingly. However, even with virtual capacities, a
clear trend was observed in the performance characteristics of
the software table implementation. To obtain more indicative
results, we need a more accurate traffic generation and
measurement mechanism to be able to find the optimal values
of the table performance settings, e.g., DPDK-based (Data
Plane Development Kit) [16] solution.

VI. CONCLUSSIONS
This work presented a flow-rule placement algorithm for

SDN switches with hybrid flow table implementations. The
algorithm is designed to utilize the flow rule capacities of both
hardware and software tables, whilst also taking into account
their inherent characteristics and limitations. The algorithm
was implemented for the ONOS SDN controller and
validated/evaluated on a physical SDN testbed. The results
indicate that using the placement algorithm allows
accommodating a larger number of flows, while limiting the
degradation in network performance for the migrated flows
and without impacting the non-migrated flows. Apart from
that, the algorithm does not incur any packet loss. The
downside is stochastic delay spikes affecting the migrated
flows, which are caused by the inherent limitations of
software-based processing of the switch. Since the behavior
of the software table heavily depends on the flow packet rates
we believe that the use-case of the algorithm could be to
offload low pps low priority flows to the software table.
However, for the algorithm to be able to perform, the
switches, on which it is going to be enforced, must first be
evaluated in terms of their software table performance, so that
the appropriate thresholds can be set. Finally, a set of future
work proposals is outlined as follows: 1) It might be of interest
to model the performance of the software table, with regards
to its utilization. The results can then be used as feedback on
the placement decisions; 2) for a non-PoC implementation of
the algorithm, the per-flow packet rates should be measured
using a dynamic and accurate channel (e.g. sFlow); 3) more

accurate traffic generation and measurement means should be
used to be able to perform stress-testing of the SDN devices
and the developed algorithm.

ACKNOWLEDGMENT
This work has been performed in the framework of the NGPaaS project,
funded by the European Commission under the Horizon 2020 and 5G-PPP
Phase2 programmes, under Grant Agreement No. 761 557 (http://ngpaas.eu).

REFERENCES
[1] K. Pagiamtzis, S. Member, A. Sheikholeslami, and S. Member,

“Content-Addressable Memory (CAM) Circuits and Architectures :
A Tutorial and Survey,” vol. 41, no. 3, pp. 712-727, Feb. 2006.

[2] A. Mimidis, C. Caba, and J. Soler, “Dynamic aggregation of traffic
flows in SDN: Applied to backhaul networks,” In Proc. IEEE
NetSoft Conf. Work. Software-Defined Infrastruct. Networks,
Clouds, IoT Serv., Seoul, pp. 136-140, 2016.

[3] S. Das et al., “Application-aware aggregation and traffic
engineering in a converged packet-circuit network,” in Proc. Opt.
Fib. Comm. Conf. and Exposition and the National Fib. Optic Eng.
Conf., Los Angeles, pp. 1-3, 2011.

[4] M. Rifai et al., “MINNIE: An SDN world with few compressed
forwarding rules,” Comput. Net., vol. 121, pp 185-207, July 2017.

[5] S. Luo, H. Yu, and L. M. Li, “Fast incremental flow table
aggregation in SDN,” in Proc. Int. Conf. Comput. Commun.
Networks, ICCCN, Shanghai, pp. 1-8, 2014.

[6] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite
CacheFlow in Software-Defined Networks,” in Proc. HotSDN
Workshop, Chicago, pp. 175-180, 2014.

[7] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow:
Dependency-Aware Rule-Caching for Software-Defined Networks,”
in Proc. Symp. on SDN Research, Santa Clara, pp. 1-12, 2016.

[8] X. Li and W. Xie, “CRAFT : A Cache Reduction Architecture for
Flow Tables in Software-Defined Networks,” in Proc. IEEE Symp.
on Computers and Comm. (ISCC), Heraklion, pp. 1-6, 2017.

[9] Z. Guo et al., “JumpFlow: Reducing flow table usage in software-
defined networks,” Comput. Net., vol. 92, Part 2, pp. 300-315, 2015.

[10] J. F. Huang, G. Y. Chang, C. F. Wang, and C. H. Lin,
“Heterogeneous Flow Table Distribution in Software-Defined
Networks,” IEEE Trans. Emerg. Top. Comput., vol. 4, no. 2, pp. 252
-261, July 2016.

[11] A. Marsico, R. Doriguzzi-Corin, and D. Siracusa, “Overcoming the
memory limits of network devices in SDN-enabled data centers,” in
Proc. Symp. Integr. Netw. Serv. Manag., Lisbon, pp. 897-898, 2017.

[12] H. Li, S. Guo, C. Wu, and J. Li, “FDRC: Flow-driven rule caching
optimization in software defined networking,” in Proc. IEEE Int.
Conf. Commun., London, pp. 5777-5782, 2015.

[13] “Open vSwitch.” [Online]. Available: http://openvswitch.org/.

[14] O. N. Foundation, “OpenFlow Switch Specification,” pp. 1-177,
2015.

[15] “ONOS.” [Online]. Available: http://onosproject.org/.

[16] "Data Plane Development Kit," [Online]. Available: http://dpdk.org/

