73 research outputs found

    Kidney involvement in systemic sclerosis.

    Get PDF
    Kidney involvement in systemic sclerosis (SSc) is primarily manifested by scleroderma renal crisis (SRC). More than 30 years ago, it was the main cause of death in these patients. The use of AC inhibitors has modified the prognosis and nowadays SRC has become a much more easily treatable complication of SSc. Furthermore, although there are still many patients who do not survive to this complication, the early diagnosis and prompt therapy of SRC can have an excellent outcome. Renal abnormalities independent of SRC are possible but are attributed to different pathogenetic mechanisms. Further understanding of pathogenesis of SRC may lead to additional improvement in the therapy of this serious complication

    A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging.

    Get PDF
    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement and autistic-like behavioural disturbances, language and speech impairment. Since no data are available about the neural and molecular underpinnings of this disease, we performed a longitudinal analysis of behavioural and pathological alterations associated with CrT deficiency in a CCDS1 mouse model. We found precocious cognitive and autistic-like defects, mimicking the early key features of human CCDS1. Moreover, mutant mice displayed a progressive impairment of short and long-term declarative memory denoting an early brain aging. Pathological examination showed a prominent loss of GABAergic synapses, marked activation of microglia, reduction of hippocampal neurogenesis and the accumulation of autofluorescent lipofuscin. Our data suggest that brain Cr depletion causes both early intellectual disability and late progressive cognitive decline, and identify novel targets to design intervention strategies aimed at overcoming brain CCDS1 alterations

    Presence in the pre-surgical fine-needle aspiration of potential thyroid biomarkers previously identified in the post-surgical one.

    Get PDF
    Fine-needle aspiration biopsy (FNA) is usually applied to distinguish benign from malignant thyroid nodules. However, cytological analysis cannot always allow a proper diagnosis. We believe that the improvement of the diagnostic capability of pre-surgical FNA could avoid unnecessary thyroidectomy. In a previous study, we performed a proteome analysis to examine FNA collected after thyroidectomy. With the present study, we examined the applicability of these results on pre-surgical FNA. We collected pre-surgical FNA from 411 consecutive patients, and to obtain a correct comparison with our previous results, we processed only benign (n=114), papillary classical variant (cPTC) (n=34) and papillary tall cell variant (TcPTC) (n=14) FNA. We evaluated levels of five proteins previously found up-regulated in thyroid cancer with respect to benign nodules. ELISA and western blot (WB) analysis were used to assay levels of L-lactate dehydrogenase B chain (LDHB), Ferritin heavy chain, Ferritin light chain, Annexin A1 (ANXA1), and Moesin in FNA. ELISA assays and WB analysis confirmed the increase of LDHB, Moesin, and ANXA1 in pre-surgical FNA of thyroid papillary cancer. Sensitivity and specificity of ANXA1 were respectively 87 and 94\% for cPTC, 85 and 100\% for TcPTC. In conclusion, a proteomic analysis of FNA from patients with thyroid nodules may help to distinguish benign versus malignant thyroid nodules. Moreover, ANXA1 appears to be an ideal candidate given the high sensitivity and specificity obtained from ROC curve analysis

    Stroke by inducing HDAC9-dependent deacetylation of HIF-1 and Sp1, promotes TfR1 transcription and GPX4 reduction, thus determining ferroptotic neuronal death

    Get PDF
    : Background: The inhibition of histone deacetylase 9 (HDAC9) represents a promising druggable target for stroke intervention. Indeed, HDAC9 is overexpressed in neurons after brain ischemia where exerts a neurodetrimental role. However, mechanisms of HDAC9-dependent neuronal cell death are not yet well established. Methods: Brain ischemia was obtained in vitro by primary cortical neurons exposed to glucose deprivation plus reoxygenation (OGD/Rx) and in vivo by transient middle cerebral artery occlusion. Western blot and quantitative real-time polymerase chain reaction were used to evaluate transcript and protein levels. Chromatin immunoprecipitation was used to evaluate the binding of transcription factors to the promoter of target genes. Cell viability was measured by MTT and LDH assays. Ferroptosis was evaluated by iron overload and 4-hydroxynonenal (4-HNE) release. Results: Our results showed that HDAC9 binds to hypoxia-inducible factor 1 (HIF-1) and specificity protein 1 (Sp1), two transcription activators of transferrin 1 receptor (TfR1) and glutathione peroxidase 4 (GPX4) genes, respectively, in neuronal cells exposed to OGD/Rx. Consequently, HDAC9 induced: (1) an increase in protein level of HIF-1 by deacetylation and deubiquitination, thus promoting the transcription of the pro-ferroptotic TfR1 gene; and (2) a reduction in Sp1 protein levels by deacetylation and ubiquitination, thus resulting in a down-regulation of the anti-ferroptotic GPX4 gene. Supporting these results, the silencing of HDAC9 partially prevented either HIF-1 increase and Sp1 reduction after OGD/Rx. Interestingly, silencing of the neurodetrimental factors, HDAC9, HIF-1, or TfR1 or the overexpression of the prosurvival factors Sp1 or GPX4 significantly reduced a well-known marker of ferroptosis 4-HNE after OGD/Rx. More important, in vivo, intracerebroventricular injection of siHDAC9 reduced 4-HNE levels after stroke by preventing: (1) HIF-1 and TfR1 increase and thus the augmented intracellular iron overload; and (2) a reduction of Sp1 and its target gene GPX4. Conclusions: Collectively, results obtained suggest that HDAC9 mediates post-traslational modifications of HIF-1 and Sp1 that, in turn, increases TfR1 and decreases GPX4 expression, thus promoting neuronal ferroptosis in in vitro and in vivo models of stroke

    Chloroviruses \u3ci\u3eN\u3c/i\u3e-linked glycans share a new type of conserved core architecture unprecedented in any form of life / [Published as] N-Linked Glycans of Chloroviruses Sharing a Core Architecture without Precedent

    Get PDF
    N-glycosylation is a fundamental modification of proteins that exists in the three domains of life and in some viruses, including the chloroviruses, for which a new type of core N-glycan is described. This N-glycan core structure common to all chloroviruses is a pentasaccharide with a β-glucose linked to an asparagine residue that is not located in the typical sequon N-X-T/S. The glucose is linked to a terminal xylose unit and a hyperbranched fucose, in turn substituted with a terminal galactose and a second xylose residue. The third position of the fucose unit is always linked to a rhamnose, which is a semi-conserved element because its absolute configuration is virus-dependent. Additional decorations occur on this core N-glycan and represent a molecular signature for each chlorovirus. Includes supplemental materials

    Structure of the unusual Sinorhizobium fredii HH103 lipopolysaccharide and its role in symbiosis

    Get PDF
    Rhizobia are soil bacteria that form important symbiotic associations with legumes, and rhizobial surface polysaccharides, such as K-antigen polysaccharide (KPS) and lipopolysaccharide (LPS), might be important for symbiosis. Previously, we obtained a mutant of Sinorhizobium fredii HH103, rkpA, that does not produce KPS, a homopolysaccharide of a pseudaminic acid derivative, but whose LPS electrophoretic profile was indistinguishable from that of the WT strain. We also previously demonstrated that the HH103 rkpLMNOPQ operon is responsible for 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-L-glyc-ero-L-manno-nonulosonic acid [Pse5NAc7(3OHBu)] production and is involved in HH103 KPS and LPS biosynthesis and that an HH103 rkpM mutant cannot produce KPS and displays an altered LPS structure. Here, we analyzed the LPS structure of HH103 rkpA, focusing on the carbohydrate portion, and found that it contains a highly heterogeneous lipid A and a peculiar core oligosaccharide composed of an unusually high number of hexuronic acids containing b-configured Pse5NAc7(3OHBu). This pseudaminic acid derivative, in its a-configuration, was the only structural component of the S. fredii HH103 KPS and, to the best of our knowledge, has never been reported from any other rhizobial LPS. We also show that Pse5NAc7(3OHBu) is the complete or partial epitope for a mAb, NB6-228.22, that can recognize the HH103 LPS, but not those of most of the S. fredii strains tested here. We also show that the LPS from HH103 rkpM is identical to that of HH103 rkpA but devoid of any Pse5NAc7(3OHBu) residues. Notably, this rkpM mutant was severely impaired in symbiosis with its host, Macroptilium atropurpureum.Fil: Di Lorenzo, Flaviana. Università degli Studi di Napoli Federico II; ItaliaFil: Speciale, Immacolata. Università degli Studi di Napoli Federico II; ItaliaFil: Silipo, Alba. Università degli Studi di Napoli Federico II; ItaliaFil: Alías Villegas, Cynthia. Universidad de Sevilla; EspañaFil: Acosta Jurado, Sebastián. Universidad de Sevilla; EspañaFil: Rodríguez Carvajal, Miguel Ángel. Universidad de Sevilla; EspañaFil: Dardanelli, Marta Susana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Biotecnología Ambiental y Salud - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Biotecnología Ambiental y Salud; ArgentinaFil: Palmigiano, Angelo. Consiglio Nazionale delle Ricerche; ItaliaFil: Garozzo, Domenico. Consiglio Nazionale delle Ricerche; ItaliaFil: Ruiz Sainz, José Enrique. Universidad de Sevilla; EspañaFil: Molinaro, Antonio. University of Naples Federico II; ItaliaFil: Vinardell, José María. Universidad de Sevilla; Españ

    TSH elevations as the first laboratory evidence for pseudohypoparathyroidism type Ib (PHP-Ib).

    Get PDF
    Hypocalcemia and hyperphosphatemia because of resistance toward parathyroid hormone (PTH) in the proximal renal tubules are the most prominent abnormalities in patients affected by pseudohypoparathyroidism type Ib (PHP-Ib). In this rare disorder, which is caused by GNAS methylation changes, resistance can occur toward other hormones, such as thyroid-stimulating hormone (TSH), that mediate their actions through G protein-coupled receptors. However, these additional laboratory abnormalities are usually not recognized until PTH-resistant hypocalcemia becomes clinically apparent. We now describe four pediatric patients, first diagnosed with subclinical or overt hypothyroidism between the ages of 0.2 and 15 years, who developed overt PTH-resistance 3 to 20 years later. Although anti-thyroperoxidase (anti-TPO) antibodies provided a plausible explanation for hypothyroidism in one of these patients, this and two other patients revealed broad epigenetic GNAS abnormalities, which included loss of methylation (LOM) at exons AS, XL, and A/B, and gain of methylation at exon NESP55; ie, findings consistent with PHP-Ib. LOM at GNAS exon A/B alone led in the fourth patient to the identification of a maternally inherited 3-kb STX16 deletion, a well-established cause of autosomal dominant PHP-Ib. Although GNAS methylation changes were not detected in additional pediatric and adult patients with subclinical hypothyroidism (23 pediatric and 39 adult cases), hypothyroidism can obviously be the initial finding in PHP-Ib patients. One should therefore consider measuring PTH, along with calcium and phosphate, in patients with unexplained hypothyroidism for extended periods of time to avoid hypocalcemia and associated clinical complications
    corecore