223 research outputs found

    Large Number Discrimination by Mosquitofish

    Get PDF
    Background: Recent studies have demonstrated that fish display rudimentary numerical abilities similar to those observed in mammals and birds. The mechanisms underlying the discrimination of small quantities (,4) were recently investigated while, to date, no study has examined the discrimination of large numerosities in fish. Methodology/Principal Findings: Subjects were trained to discriminate between two sets of small geometric figures using social reinforcement. In the first experiment mosquitofish were required to discriminate 4 from 8 objects with or without experimental control of the continuous variables that co-vary with number (area, space, density, total luminance). Results showed that fish can use the sole numerical information to compare quantities but that they preferentially use cumulative surface area as a proxy of the number when this information is available. A second experiment investigated the influence of the total number of elements to discriminate large quantities. Fish proved to be able to discriminate up to 100 vs. 200 objects, without showing any significant decrease in accuracy compared with the 4 vs. 8 discrimination. The third experiment investigated the influence of the ratio between the numerosities. Performance was found to decrease when decreasing the numerical distance. Fish were able to discriminate numbers when ratios were 1:2 or 2:3 but not when the ratio was 3:4. The performance of a sample of undergraduate students, tested non-verbally using the same sets of stimuli, largely overlapped that of fish

    Male and female guppies differ in problem-solving abilities

    Get PDF
    In a number of species, males and females have different ecological roles and therefore might be required to solve different problems. Studies on humans have suggested that the 2 sexes often show different efficiencies in problem-solving tasks; similarly, evidence of sex differences has been found in 2 other mammalian species. Here, we assessed whether a teleost fish species, the guppy, Poecilia reticulata, displays sex differences in the ability to solve problems. In Experiment 1, guppies had to learn to dislodge a disc that occluded a feeder from which they had been previously accustomed to feed. In Experiment 2, guppies had to solve a version of the detour task that required them to learn to enter a transparent cylinder from the open sides to reach a food reward previously freely available. We found evidence of sex differences in both problem-solving tasks. In Experiment 1, females clearly outperformed males, and in Experiment 2, guppies showed a reversed but smaller sex difference. This study indicates that sex differences may play an important role in fish\u2019s problem-solving similar to what has previously been observed in some mammalian specie

    Interspecific differences in developmental mode determine early cognitive abilities in teleost fish

    Get PDF
    Most studies on developmental variation in cognition have suggested that individuals are born with reduced or absent cognitive abilities, and thereafter, cognitive performance increases with age during early development. However, these studies have been mainly performed in altricial species, such as humans, in which offspring are extremely immature at birth. In this work, we tested the hypothesis that species with other developmental modes might show different patterns of cognitive development. To this end, we analysed inhibitory control performance in two teleost species with different developmental modes, the zebrafish Danio rerio and the guppy Poecilia reticulata, exploiting a simple paradigm based on spontaneous behaviour and therefore applicable to subjects of different ages. Zebrafish hatch as larvae 3 days after fertilisation, and have an immature nervous system, a situation that mirrors extreme altriciality. We found that at the early stages of development, zebrafish displayed no evidence of inhibitory control, which only begun to emerge after one month of life. Conversely, guppies, which are born after approximately one month of gestation as fully developed and independent individuals, solved the inhibitory control task since their first days of life, although performance increased with sexual maturation. Our study suggests that the typical progression described during early ontogeny in humans and other species might not be the only developmental trend for animals' cognition and that a species' developmental mode might determine variation in cognition across subjects of different age

    Isolation and Genetic Characterization of Mother-of-Snow-White, a Maternal Effect Allele Affecting Laterality and Lateralized Behaviors in Zebrafish

    Get PDF
    In the present work we report evidence compatible with a maternal effect allele affecting left-right development and functional lateralization in vertebrates. Our study demonstrates that the increased frequency of reversed brain asymmetries in a zebrafish line isolated through a behavioral assay is due to selection of mother-of-snow-white (msw), a maternal effect allele involved in early stages of left-right development in zebrafish. msw homozygous females could be identified by screening of their progeny for the position of the parapineal organ because in about 50% of their offspring we found an altered, either bilateral or right-sided, expression of lefty1 and spaw. Deeper investigations at earlier stages of development revealed that msw is involved in the specification and differentiation of precursors of the Kupffer's vesicle, a structure homologous to the mammalian node. To test the hypothesis that msw, by controlling Kupffer's vesicle morphogenesis, controls lateralized behaviors related to diencephalic asymmetries, we analyzed left- and right-parapineal offspring in a “viewing test”. As a result, left- and right-parapineal individuals showed opposite and complementary eye preference when scrutinizing a model predator, and a different degree of lateralization when scrutinizing a virtual companion. As maternal effect genes are expected to evolve more rapidly when compared to zygotic ones, our results highlight the driving force of maternal effect alleles in the evolution of vertebrates behaviors

    Laterality Enhances Numerical Skills in the Guppy, Poecilia reticulata

    Get PDF
    It has been hypothesized that cerebral lateralization can significantly enhance cognition and that this was one of the primary selective forces shaping its wide-spread evolution amongst vertebrate taxa. Here, we tested this hypothesis by examining the link between cerebral lateralization and numerical discrimination. Guppies, Poecilia reticulata, were sorted into left, right and non-lateralized groups using a standard mirror test and their numerical discrimination abilities tested in both natural shoal choice and abstract contexts. Our results show that strongly lateralized guppies have enhanced numerical abilities compared to non-lateralized guppies irrespective of context. These data provide further credence to the notion that cerebral lateralization can enhance cognitive efficiency

    Hemispheric Specialization in Dogs for Processing Different Acoustic Stimuli

    Get PDF
    Considerable experimental evidence shows that functional cerebral asymmetries are widespread in animals. Activity of the right cerebral hemisphere has been associated with responses to novel stimuli and the expression of intense emotions, such as aggression, escape behaviour and fear. The left hemisphere uses learned patterns and responds to familiar stimuli. Although such lateralization has been studied mainly for visual responses, there is evidence in primates that auditory perception is lateralized and that vocal communication depends on differential processing by the hemispheres. The aim of the present work was to investigate whether dogs use different hemispheres to process different acoustic stimuli by presenting them with playbacks of a thunderstorm and their species-typical vocalizations. The results revealed that dogs usually process their species-typical vocalizations using the left hemisphere and the thunderstorm sounds using the right hemisphere. Nevertheless, conspecific vocalizations are not always processed by the left hemisphere, since the right hemisphere is used for processing vocalizations when they elicit intense emotion, including fear. These findings suggest that the specialisation of the left hemisphere for intraspecific communication is more ancient that previously thought, and so is specialisation of the right hemisphere for intense emotions

    Visual Lateralization in Wild Striped Dolphins (Stenella coeruleoalba) in Response to Stimuli with Different Degrees of Familiarity

    Get PDF
    Background: Apart from findings on both functional and motor asymmetries in captive aquatic mammals, only few studies have focused on lateralized behaviour of these species in the wild. Methodology/Principal Findings: In this study we focused on lateralized visual behaviour by presenting wild striped dolphins with objects of different degrees of familiarity (fish, ball, toy). Surveys were conducted in the Gulf of Taranto, the northern Ionian Sea portion delimited by the Italian regions of Calabria, Basilicata and Apulia. After sighting striped dolphins from a research vessel, different stimuli were presented in a random order by a telescopic bar connected to the prow of the boat. The preferential use of the right/left monocular viewing during inspection of the stimuli was analysed. Conclusion: Results clearly showed a monocular viewing preference with respect to the type of the stimulus employed. Due to the complete decussation of the optical nerves in dolphin brain our results reflected a different specialization of brain hemispheres for visual scanning processes confirming that in this species different stimuli evoked different patterns of eye use. A preferential use of the right eye (left hemisphere) during visual inspection of unfamiliar targets was observed supporting the hypothesis that, in dolphins, the organization of the functional neural structures which reflected cerebral asymmetries for visual object recognition could have been subjected to a deviation from the evolutionary line of mos

    Evidence for Two Numerical Systems That Are Similar in Humans and Guppies

    Get PDF
    Background: Humans and non-human animals share an approximate non-verbal system for representing and comparing numerosities that has no upper limit and for which accuracy is dependent on the numerical ratio. Current evidence indicates that the mechanism for keeping track of individual objects can also be used for numerical purposes; if so, its accuracy will be independent of numerical ratio, but its capacity is limited to the number of items that can be tracked, about four. There is, however, growing controversy as to whether two separate number systems are present in other vertebrate species. Methodology/Principal Findings: In this study, we compared the ability of undergraduate students and guppies to discriminate the same numerical ratios, both within and beyond the small number range. In both students and fish the performance was ratio-independent for the numbers 1–4, while it steadily increased with numerical distance when larger numbers were presented. Conclusions/Significance: Our results suggest that two distinct systems underlie quantity discrimination in both humans and fish, implying that the building blocks of uniquely human mathematical abilities may be evolutionarily ancient, datin
    corecore