235 research outputs found

    Valley Jahn-Teller Effect in Twisted Bilayer Graphene

    Get PDF
    The surprising insulating and superconducting states of narrow-band graphene twisted bilayers have been mostly discussed so far in terms of strong electron correlation, with little or no attention to phonons and electron-phonon effects. We found that, among the 33 492 phonons of a fully relaxed \u3b8=1.08\ub0 twisted bilayer, there are few special, hard, and nearly dispersionless modes that resemble global vibrations of the moir\ue9 supercell, as if it were a single, ultralarge molecule. One of them, doubly degenerate at \u393 with symmetry A1+B1, couples very strongly with the valley degrees of freedom, also doubly degenerate, realizing a so-called E\ue2\u160-e Jahn-Teller (JT) coupling. The JT coupling lifts very efficiently all degeneracies which arise from the valley symmetry, and may lead, for an average atomic displacement as small as 0.5 m \uc5, to an insulating state at charge neutrality. This insulator possesses a nontrivial topology testified by the odd winding of the Wilson loop. In addition, freezing the same phonon at a zone boundary point brings about insulating states at most integer occupancies of the four ultraflat electronic bands. Following that line, we further study the properties of the superconducting state that might be stabilized by these modes. Since the JT coupling modulates the hopping between AB and BA stacked regions, pairing occurs in the spin-singlet Cooper channel at the inter-(AB-BA) scale, which may condense a superconducting order parameter in the extended s-wave and/or d\ub1id-wave symmetry

    Emergent D6 symmetry in fully relaxed magic-angle twisted bilayer graphene

    Get PDF
    We present a tight-binding calculation of a twisted bilayer graphene at magic angle \u3b8 3c1.08, allowing for full, in- and out-of-plane, relaxation of the atomic positions. The resulting band structure displays, as usual, four narrow minibands around the neutrality point, well separated from all other bands after the lattice relaxation. A thorough analysis of the miniband Bloch functions reveals an emergent D6 symmetry, despite the lack of any manifest point-group symmetry in the relaxed lattice. The Bloch functions at the \u393 point are degenerate in pairs, reflecting the so-called valley degeneracy. Moreover, each of them is invariant under C3z, i.e., transforming like a one-dimensional, in-plane symmetric irreducible representation of an "emergent" D6 group. Out of plane, the lower doublet is even under C2x, while the upper doublet is odd, which implies that at least eight Wannier orbitals, two s-like and two pz-like ones for each of the supercell sublattices AB and BA, are necessary but probably not sufficient to describe the four minibands. This unexpected one-electron complexity is likely to play an important role in the still unexplained metal-insulator-superconductor phenomenology of this system

    2-Mercaptobenzoxazoles: a class of carbonic anhydrase inhibitors with a novel binding mode to the enzyme active site.

    Get PDF
    2-Mercaptobenzoxazole represents an interesting lead compound alternative to the classical sulfonamides for the development of selective carbonic anhydrase inhibitors

    Transcriptomic insights on the preventive action of apple (cv Granny Smith) wkin wounding on superficial scald development

    Get PDF
    Superficial scald is a post-harvest chilling storage injury leading to browning of the surface of the susceptible cv Granny Smith apples. Wounding of skins has been reported to play a preventive role on scald development however its underlying molecular factors are unknown. We have artificially wounded the epidermal and sub-epidermal layers of apple skins consistently obtaining the prevention of superficial scald in the surroundings of the wounds during two independent vintages. Time course RNA-Seq analyses of the transcriptional changes in wounded versus unwounded skins revealed that two transcriptional waves occurred. An early wave included genes up-regulated by wounding already after 6 h, highlighting a specific transcriptional rearrangement of genes connected to the biosynthesis and signalling of JA, ethylene and ABA. A later transcriptional wave, occurring after three months of cold storage, included genes up-regulated exclusively in unwounded skins and was prevented from its occurrence in wounded skins. A significant portion of these genes was related to decay of tissues and to the senescence hormones ABA, JA and ethylene. Such changes suggest a wound-inducible reversed hormonal balance during post-harvest storage which may explain the local inhibition of scald in wounded tissues, an aspect that will need further studies for its mechanistic explanatio

    First-in-Class Dual Hybrid Carbonic Anhydrase Inhibitors and Transient Receptor Potential Vanilloid 1 Agonists Revert Oxaliplatin-Induced Neuropathy

    Get PDF
    Here, we report for the first time a series of compounds potentially useful for the management of oxaliplatin-induced neuropathy (OINP) able to modulate the human Carbonic Anhydrases (hCAs) as well as the Transient Receptor Potential Vanilloid 1 (TRPV1). All compounds showed effective in vitro inhibition activity toward the main hCAs involved in such a pathology, whereas selected items reported moderate agonism of TRPV1. X-ray crystallographic experiments assessed the binding modes of the two enantiomers (R)-37a and (S)-37b within the hCA II cleft. Although the tails assumed diverse orientations, no appreciable effects were observed for their hCA II affinity. Similarly, the activity of (R)-39a and (S)-39b on TRPV1 was not influenced by the stereocenters. In vivo evaluation of the most promising derivatives (R)-12a, (R)-37a, and the two enantiomers (R)-39a, (S)-39b revealed antihypersensitivity effects in a mouse model of OINP with potent and persistent effect up to 75 min after administration

    Sex Differences in Heart Failure: What Do We Know?

    Get PDF
    : Heart failure (HF) remains an important global health issue, substantially contributing to morbidity and mortality. According to epidemiological studies, men and women face nearly equivalent lifetime risks for HF. However, their experiences diverge significantly when it comes to HF subtypes: men tend to develop HF with reduced ejection fraction more frequently, whereas women are predominantly affected by HF with preserved ejection fraction. This divergence underlines the presence of numerous sex-based disparities across various facets of HF, encompassing aspects such as risk factors, clinical presentation, underlying pathophysiology, and response to therapy. Despite these apparent discrepancies, our understanding of them is far from complete, with key knowledge gaps still existing. Current guidelines from various professional societies acknowledge the existence of sex-based differences in HF management, yet they are lacking in providing explicit, actionable recommendations tailored to these differences. In this comprehensive review, we delve deeper into these sex-specific differences within the context of HF, critically examining associated definitions, risk factors, and therapeutic strategies. We provide a specific emphasis on aspects exclusive to women, such as the impact of pregnancy-induced hypertension and premature menopause, as these unique factors warrant greater attention in the broader HF discussion. Additionally, we aim to clarify ongoing controversies and knowledge gaps pertaining to the pharmacological treatment of HF and the sex-specific indications for cardiac implantable electronic devices. By shining a light on these issues, we hope to stimulate a more nuanced understanding and promote the development of more sex-responsive approaches in HF management

    Genetics and clinical phenotype of Erdheim–Chester disease: A case report of constrictive pericarditis and a systematic review of the literature

    Get PDF
    Background: Erdheim–Chester disease (ECD) is a rare form of histiocytosis. An increasing number of genetic mutations have been associated with this syndrome, confirming its possible neoplastic origin. Recently, a connection between the BRAF mutational status and a specific phenotype was described; however, no studies have yet evaluated the correlations between other mutations and the clinical features of the disease. Objectives: This study aims to clarify the association between the clinical phenotype and genetic mutations identified in the neoplastic cell lines of ECD. Methods: We describe a case of ECD characterized by pericardial involvement and a KRAS mutation shared with chronic myelomonocytic leukemia. Hence, through a meta-analysis of individual participant data of all genetically and clinically described cases of ECD in the literature, we aimed to elucidate the association between its clinical phenotype and baseline genetic mutations. Results: Of the 760 studies screened, our review included 133 articles published from 2012 to April 2021. We identified 311 ECD patients whose genotype and phenotype were described. We found five main genes (BRAF, KRAS, NRAS, PIK3CA, and MAP2K1) whose mutation was reported at least three times. Mutation of BRAF led to a neurological disease (183 of 273 patients, 67%; p < 0.001); KRAS- and NRAS-mutated patients mainly showed cutaneous (five of six patients, 83.3%, p < 0.004) and pleural (four of nine patients, 44%, p = 0.002) involvement, respectively; PIK3CA was not associated with specific organ involvement; and MAP2K1 mutations caused the disease to primarily involve the peritoneum and retroperitoneum (4 of 11, 36.4%, p = 0.01). Conclusion: This work implies a possible influence of baseline mutation over the natural history of ECD, underscoring the importance of a thorough genetic analysis in all cases with the ultimate goal of identifying a possible targeted therapy for each patient
    • …
    corecore