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We present a tight-binding calculation of a twisted bilayer graphene at magic angle θ ∼ 1.08◦, al-
lowing for full, in- and out-of-plane, relaxation of the atomic positions. The resulting band structure
displays as usual four narrow mini bands around the neutrality point, well separated from all other
bands after the lattice relaxation. A thorough analysis of the mini-bands Bloch functions reveals
an emergent D6 symmetry, despite the lack of any manifest point group symmetry in the relaxed
lattice. The Bloch functions at the Γ point are degenerate in pairs, reflecting the so-called valley
degeneracy. Moreover, each of them is invariant under C3z, i.e., transforming like one-dimensional,
in-plane symmetric irreducible representation of an "emergent" D6 group. Out of plane, the lower
doublet is even under C2x, while the upper doublet is odd, which implies that at least eight Wan-
nier orbitals, two s-like and two pz-like for each of the two supercell sublattices AB and BA are
necessary, probably not sufficient, to describe the four mini bands. This unexpected one-electron
complexity is likely to play an important role in the still unexplained metal-insulator-superconductor
phenomenology of this system.

I. INTRODUCTION

The discovery of the insulating behaviour in small
angle twisted bilayer graphene (tBLG),1,2 and the ap-
pearance of superconducting domes upon slight hole-
or electron-doping those insulating phases,2,3 has stim-
ulated an intense theoretical effort to understand this
phenomenon. At small "magic" angles θ ≈ 1.1◦, the
electronic structure of tBLG is characterized by four ex-
tremely narrow bands, with a bandwidth of ≈ 10 meV,
which lie around the charge neutrality point in the re-
duced Brillouin zone of the emergent moirè superlat-
tice.4 Specifically, at charge neutrality these bands are
half-filled, and thus one would expect an insulating be-
haviour upon adding either four holes or four electrons
per moirè unit cell, as indeed observed experimentally. In
reality, tight-binding calculations,5–7 as well as more re-
liable electronic structure approaches based on DFT,8–10
show that when the graphene layers are kept rigid the
mini bands around the magic angles are not always sep-
arated from other bands at the Γ point, in contrast
with experiments. However, once the tBLG lattice is al-
lowed to relax,11,12 even the simple tight-binding scheme
shows a relatively large gap opening, which separates the
flat mini-bands from all others. Experimentally, there
is additional evidence2 of an insulating behaviour also
when one or three holes/electrons are injected with re-
spect to neutrality. Because of that and of the very
non-dispersive character of the mini bands, it is tempt-
ing to invoke an important role of strong electronic
correlations.1 The common approach dealing with strong
correlations is adding electron-electron repulsion on top
of a tight-binding lattice model. However, the large num-
ber of atoms contained in the unit cell (up to ≈ 11, 000 at

θ ≈ 1.1) makes it challenging, if not impossible, to carry
out a straight many-body calculation even in the already
simplified lattice model. A further approximation may
consist in focusing just on the four mini bands, an ap-
proach which requires to first identify their corresponding
Wannier functions. Surprisingly, even such a preliminary
step turns out to be rather difficult and, to some extent,
controversial.10,13–17 The scope of the present work is to
shed light on this debated issue.

II. PRELIMINARY DEFINITIONS AND
RESULTS

In Fig. 1(a) we show two graphene layers rotated with
respect to the each other by a small angle. Due to
the small misalignment between the graphene layers, a
moiré pattern forms where regions characterized by local
realizations of different stacking modes appear periodi-
cally within the bilayer. Bernal-stacked regions (AB or
BA) form an honeycomb lattice (black circles in Fig. 1),
while AA-stacked regions in the hexagon centers form
a triangular lattice (black triangles in Fig. 1). If the
twisted bilayer is obtained from AA stacking upon rota-
tion around the center of two overlapping basic graphene
hexagons, the point-group symmetry of the superlattice
is D6, which reduces to D3 if, as we shall assume in the
following, the rotation center is around a vertical C-C
bond 13,18 However, irrespective of the actual structural
symmetry group, there is wide consensus10,13,14,16 that a
proper description of the band structure can be obtained
by just assuming that the Wannier orbitals of the mini
bands are centred on the AB and BA sites of the honey-
comb moiré superlattice, even though their actual weight
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FIG. 1: (a) Two graphene sheets rotated by a small angle
(shown here for θ ≈ 3.89◦, while remaining calculations will
be for θ = 1.08◦) with respect to each other. The emerging
moiré pattern is highlighted by a grey shaded line and the
predominant character of the stacking between the two lay-
ers, AA and AB (or BA), is indicated by black triangles and
circles, respectively. The triangular superlattice vectors L1

and L2 connects different AA zones. (b) Mini Brillouin zone
of tBLG. The high symmetry points Γ,K1,K2,M are shown
together with the reciprocal lattice vectors G1 and G2.

is mostly localized on the AA regions. For this reason
we parametrize the Wannier orbitals ΨAB(r− rAB) and
ΨBA(r− rBA) centred around the AB and BA sites with
coordinates rAB and rBA, respectively, through the func-
tions ψABi (r−Ri) and ψBAi (r−R′i), i = 1, 2, 3, centred
instead around the neighbouring AA sites with coordi-
nates Ri and R′i that are actually lattice sites of the
triangular supercell, see Fig. 2.
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FIG. 2: Pictorial view of the Wannier functions ΨAB(r−rAB)
and ΨBA(r − rBA) centred at AB and BA sites, respec-
tively. The triangles represent wavefunction components cen-
tred around the AA regions, while the combination of the
three triangles defines the Wannier orbital, centred instead
around AB, left, or BA, right.

In particular we shall assume that ψAB1 and ψBA3 are
centred at the origin, taken to coincide with AA center
R1 = R′3 = 0, so that R2 = −L1, R′2 = L2, R3 =
R′1 = L1 − L2, rAB = (L1 − 2L2)/3 and rBA = (2L1 −
L2)/3, where L1 and L2 are the lattice vectors shown in
Fig. 1(a).
It follows that the most general Bloch function Φk(r) can

be written as

Φk(r) =
1√
V

∑
R

(
uk e−ik·(R+rAB) ΨAB(r− rAB −R)

+ vk e−ik·(R+rBA) ΨBA(r− rBA −R)

)

=
1√
V

∑
R

e−ik·R
(
uk ψ

AB
k (r−R) + vk ψ

BA
k (r−R)

)
≡ 1√

V

∑
R

e−ik·R φk(r−R) ,

(1)
where |uk|2 + |vk|2 = 1, V is the area, and

ψABk (r) = ψAB1 (r) e−ik·(L1−2L2)/3

+ψAB2 (r) e−ik·(L1+L2)/3

+ψAB3 (r) e−ik·(−2L1+L2)/3 , (2)

ψBAk (r) = ψBA1 (r) e−ik·(−L1+2L2)/3

+ψBA2 (r) e−ik·(−L1−L2)/3

+ψBA3 (r) e−ik·(2L1−L2)/3 . (3)

We note that, even though φk(r−R) might be confused
with the Wannier function centred in the triangular site
R, yet it is not so because of the explicit dependence
upon momentum k. In particular, under a symmetry
transformation G, such that r→ rG and k→ kG,

G
(

Φk(r)
)

=
1√
V

∑
R

e−ikG·R φk(rG −R) , (4)

the outcome simplifies only at the high-symmetry k-
points, i.e., when kG ≡ k apart from a reciprocal lattice
vector, in which case

G
(

Φk(r)
)

= Φk(rG) . (5)

In Fig. 1(b) we show the first Brillouin zone, the re-
ciprocal lattice vectors G1 and G2, as well as the high-
symmetry k-points Γ, K1 = (G1 + 2G2)/3, K2 = −K1

and M = (G1 + G2)/2. The symmetry group G=D6

is generated by C3z, C2z and C2x, while G=D3 only by
C3z and C2y = C2z C2x. The little group L at Γ co-
incides with the full G, thus either D6 or D3, while, at
K1 or K2, L is generated only by C3z for both G=D6

and G=D3. It follows that the symmetry properties of
the Bloch wavefunctions at Γ can discriminate between
G=D6 and G=D3, as we shall indeed show.
Going back to the definitions (2) and (3), we find for the
high-symmetry points shown in Fig. 1(b),

ψABΓ (r) = ψAB1 (r) + ψAB2 (r) + ψAB3 (r) ,

ψBAΓ (r) = ψBA1 (r) + ψBA2 (r) + ψBA3 (r) ,
(6)
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at Γ, while at K1,

ψABK1
(r) = ω

(
ψAB1 (r) + ω ψAB2 (r) + ω∗ ψAB3 (r)

)
,

ψBAK1
(r) = ω∗

(
ψBA1 (r) + ω∗ ψBA2 (r) + ω ψBA3 (r)

)
,

(7)

and finally at K2,

ψABK2
(r) = ω∗

(
ψAB1 (r) + ω∗ ψAB2 (r) + ω ψAB3 (r)

)
,

ψBAK2
(r) = ω

(
ψBA1 (r) + ω ψBA2 (r) + ω∗ ψBA3 (r)

)
,

(8)

where ω = ei2π/3.
For later convenience, we recall how the different symme-
try operations act in tBLG. We write the coordinate of a
carbon atom as r = (x, y, z) ≡ (r||, z), where z = −1 in-
dicates the bottom layer #1 while z = +1 the upper one
#2. The planar coordinate r|| may belong to sublattice
A or B of each graphene layer, as well as to the AB or
BA sublattice regions of the superlattice. It follows that
C3z changes neither z nor the sublattice index, both of
the original lattice, A or B, as well as of the superlattice,
AB or BA. On the contrary, under C2z, z ↔ z, A ↔ B
and AB ↔ BA. Finally, under C2x, z ↔ −z, A ↔ B,
while AB and BA are invariant.

III. LATTICE RELAXATION AND TIGHT
BINDING CALCULATION OF THE tBLG

BANDSTRUCTURE

A. Model and simulation protocol

The above symmetry analysis strictly holds only for an
idealized tBLG obtained by a rigid rotation of the layers
without atomic relaxation. However, there is strong
evidence of a substantial lattice relaxation, especially at
small twist angles,19,20 which needs to be accounted for
to get physically reliable results.

We thus performed lattice relaxations via classical
molecular dynamics simulations using state-of-the-art
force-fields. We select a few angles in the range of
θ ≈ 1◦-1.5◦, at which perfectly periodic (commensurate)
structures can be built.21 We consider an aligned bilayer
(θ = 0◦) in the AA stacking configuration, and rotate the
upper layer around a carbon atom, which corresponds
to a type II structure18 with only D3 symmetry. The
carbon-carbon intralayer interactions are modelled via
the second generation REBO potential.22 The interlayer
interactions are instead modelled via the Kolmogorov-
Crespi (KC) potential,23 using the recent parametriza-
tion of Ref. 24. The starting intralayer carbon-carbon
distance is set equal to a0 = 1.3978 Å , corresponding
to the equilibrium bond length of the adopted REBO
potential, giving a lattice parameter of a ≈ 2.42 Å.

interlayer dist. ∆ε

(Å) (meV/atom)

AB 3.39 0

SP 3.42 0.74

AA 3.61 4.70

TABLE I: The equilibrium interlayer distance and the corre-
sponding total energy of aligned (θ = 0◦) graphene bilayers at
various stacking modes, specified in the first column. Energies
are measured relative to that of the optimal AB stacking. Re-
sults obtained by initialling shifting the relative (x,y) centers-
of mass of the two layers, and then relaxing. For the case of
AB stacking, a full relaxation of the bilayer was performed.
For the case of AA or SP stacking, only the z coordinate of
all atoms was relaxed, while the in plane (x,y) coordinates
were held fixed. This prevented the bilayer from falling into
the AB global minimum, thus preserving the initial stacking.

Geometric optimizations are performed using the FIRE
algorithm.25 The atomic positions are relaxed toward
equilibrium until total force acting on each atom, Fi =
|−∇ri(V

KC
inter+V

REBO
intra )|, become less than 10−6 eV/atom.

It is important to stress that during the relaxation the
system is not constrained to preserve any particular sym-
metry.

B. Results: optimized geometry of magic angle
tBLG

Fig. 3(a) shows the supercell of tBLG at θ ≈ 1.08◦,
before relaxation, corresponding to a triangular super-
lattice of period7 LM = |L1| = |L2| = a

2 sin(θ/2) ≈ 13 nm
and, as mentioned before, D3 symmetry. Examining dif-
ferent directions, areas of energetically least favourable
AA stacking, see Table I, gradually turn into energeti-
cally more favourable saddle point (SP) regions or most
favourable AB and BA stacking regions. As previously
reported,11,19,20,26–29 after full relaxation the AA regions
shrink while the area of the Bernal-stacked regions ex-
pand (see Fig. 3(b)). This is achieved via small in-
plane deformations characterized by a displacement field
that rotates around the center of the AA domains (see
Fig. 3(c)), respectively counterclockwise and clockwise in
the upper and lower layer. We note that such distortions
lead to negligible local lattice compressions/expansions,
corresponding to variations < 0.03% of the stiff carbon-
carbon bond length relative to the equilibrium value. On
the other hand, the large difference between the equilib-
rium interlayer distances of the AA and AB stacking (see
Table I) leads to significant out-of-plane buckling defor-
mations, genuine "corrugations" of the graphene layers,
that form protruding bubbles in correspondence of the
AA regions. This is clearly shown in Fig. 3(d), where
the colour map of the local interlayer distance, shows an
overall increase of ∼ 0.2 Å from Bernal AB (blue circle)
to the AA region (green circle). We end by emphasising
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FIG. 3: (a) The supercell of a tBLG at θ ≈ 1.08◦ used in simulations, obtained upon rotating a bilayer initially in the AA
stacking configuration around a vertical C-C bond (D3 structure). Arrows show the primitive lattice vectors, of length LM ,
of the triangular moiré superstructure. Green, grey, red and blue circles mark the regions of AA, SP, AB and BA stacking,
respectively. (b) Local structure before and after relaxation around the center of the AA, SP and AB regions. (c) Displacement
field showing the in-plane deformations of the upper layer. The displacement vectors {ui} go from the equilibrium position
of the carbon atoms in the non-relaxed configuration to the corresponding position in the fully relaxed structure. Only few
vectors are shown for clarity, magnified by a factor of ten. (d) Colored map showing the local interlayer distance. The colored
circles reported in panels (c) and (d) correspond to the samples of panel (b).

that the relaxed structure does not exhibit any manifest
point-group symmetry, despite its initial D3 symmetry
before relaxation. Naïvely, one should then conclude that
all the symmetry analysis of the previous section is un-
justified and meaningless. We shall show below that this
is not the case.

C. Tight-binding electronic structure calculations

While the above discussion focused on a specific su-
percell at θ ≈ 1.08◦, qualitatively similar results were
obtained for other angles, too. We emphasize that out-
of-plane deformations, significant at small magic angles,
have important effects on the electronic structure of the
system. Indeed, as can be seen from Fig. 4(b), where the
tight-binding band structure is calculated for the fully
relaxed structure, the flat bands are now well separated
from the rest by an ≈ 45− 50 meV gap, consistent with
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experiment1–3, and larger than the gap obtained allowing
only in-plane displacements.11

Tight-binding calculation details are standard. Denot-
ing the position within the unit cell of atom i as ri we
can write the tight-binding Hamiltonian as:

Ĥ =
∑
i,j

(
t
(
ri − rj

)
| i〉〈j | + H.c.

)
, (9)

where t(ri − rj) is the hopping amplitude which is com-
puted using the Slater-Koster formalism:30

t(d) = Vppσ(d)

[
d · ez
d

]2
+ Vppπ(d)

[
1−

(d · ez
d

)2]
,

(10)
where d = ri − rj , d = |d|, and ez is the unit vector in
the direction perpendicular to the graphene planes. The
out-of-plane (σ) and in-plane (π) transfer integrals are:

Vppσ(x) = V 0
ppσe

− x−d0
r0 Vppπ(x) = V 0

ppπe
− x−a0

r0 (11)

where V 0
ppσ = 0.48 eV and V 0

ppπ = −2.7 eV are val-
ues chosen to reproduce ab-initio dispersion curves in
AA and AB stacked bilayer graphene, d0 = 3.344Å is
the starting inter-layer distance, a0 = 1.3978Å is the in-
tralayer carbon-carbon distance, as previously defined,
and r0 = 0.184 a is the decay length, in units of the lat-
tice parameter.8,11 Although the hopping amplitude de-
creases exponentially with distance, we found that upon
setting even a fairly large cutoff rc, important features of
the band structure are spoiled. An example is the degen-
eracy at the K1(2) points, which we find to be fourfold,
up to our numerical accuracy, keeping all hopping ampli-
tudes that are nonzero within machine precision, while it
is fully lifted using a cutoff as large as rc ≈ 4a0.

In addition, we assumed the carbon π-orbitals to be
oriented along ez, while in reality they are oriented
along the direction locally perpendicular to the relaxed
graphene sheet, no longer flat. However, since the out
of plane distortions varies smoothly along the moiré pat-
tern, we checked that the misorientation of the orbitals
with respect to the z axis are lower than ≈ 0.1 − 0.01◦,
and have no noticeable effect on the band structure.

IV. SYMMETRY ANALYSIS OF THE BLOCH
FUNCTIONS

In Fig. 4 we show the band structure around the
neutrality point. In Fig. 4(a), we plot just the four mini
bands, which are well separated from the others, see
Fig. 4(b). We also indicate the degeneracy at the high
symmetry points. In particular, at K1 and K2 we find
that all four bands are degenerate within our numerical
accuracy, while they are split into two doublets at Γ and
M. In Fig. 4(c), we show the level spectrum at the Γ
point, including the degeneracy of each level.
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FIG. 4: Band structure at twist angle 1.08◦ of the relaxed
tBLG. (a) A zoom-in of the band structure showing only the
four mini bands, where labels indicate their degeneracy at
the high symmetry points. (b) The full band structure. The
two circles indicate the s (below) and pz (up) doublets used
to construct the Wannier orbitals. (c) Level spectrum and
degeneracy at the Γ point. The label s and pz refer to the
symmetry under C2x, see the text.

Even though the relaxed lattice has no manifest point
symmetry, we shall still assume, arbitrarily for now,
either D3 or D6 symmetry retaining the formalism of
Sec. II. The comparison with the tight-binding results
will decide upon the validity of that assumption.
Since the Wannier functions are centred at the vertices
of the hexagons, where the symmetry is C3 irrespective
of the global symmetry being D6 or D3, one could be
tempted to rationalize13,14 the miniband Γ point dou-
ble degeneracy as due to two different ΨAB , as well as
ΨBA, see Fig. 2, which transform as the two-dimensional
irreducible representation of C3. We find that this as-
sumption is not correct in our case. In Fig. 5 we show
the wavefunction of one of the two states within the lower
doublet at Γ. It is visually evident, and also confirmed
numerically, that a mini-band Bloch wavefunction at Γ is
instead invariant under C3z, which implies that the Wan-
nier functions must transform as one of the singlet irreps
of C3. The same is true for all the other three Bloch func-
tions which we do not show. Assuming therefore that all
the Wannier functions are invariant under C3z, we can
parametrize the functions ψABi (r), i = 1, 2, 3, of Fig. 2 as
follows

ψAB1 (r) = A(r) + E+1(r) + E−1(r) ,

ψAB2 (r) = A(r) + ωE+1(r) + ω∗E−1(r) ,

ψAB3 (r) = A(r) + ω∗E+1(r) + ωE−1(r) ,

(12)

where A(r) is invariant under C3, while E±1(r) trans-
forms with eigenvalue ω±1 = e±i2π/3. Recalling that
ψABn+1(r−L2) = C3(ψABn (r− 0)) (n = 1, 2, 3 and n+ 3 =
n), one can readily show that the Wannier function
ΨAB(r) shown in Fig. 2 is indeed invariant under C3z.
Similarly, for ψBAi (r) we introduce the functions A′(r)



6

and E′±1(r). It follows that the Eqs. (6) and (7) simplify
to

ψABΓ (r) = 3A(r) ,

ψABK1
(r) = 3ωE−1(r) ,

ψABK2
(r) = 3ω∗E+1(r) ,

(13)

for AB, and

ψBAΓ (r) = 3A′(r) ,

ψBAK1
(r) = 3ω∗E′+1(r) ,

ψBAK2
(r) = 3ωE′−1(r) ,

(14)

for BA. Therefore, studying the Bloch functions at the
different high-symmetry points gives direct access to A(r)
as well as E±1(r), as we show in what follows.
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FIG. 5: Layer (#1-#2) and sublattice (A-B) components of
one state within the lowest-energy doublet at Γ in the flat
bands. The colour of each point indicates its complex phase,
while its size is a measure of its square modulus. Each unit
cell (black dashed line in top left panel) has been replicated 3
times to improve visibility. This eigenstate is invariant under
C3z, even with respect to C2x and odd under C2z.

A. Bloch functions at Γ

We start our analysis from the Γ point. Looking again
at Fig. 5, one notes that the Bloch functions have negli-
gible amplitude in the AA zones, being mostly localized
in AB/BA,31 and thus the Wannier orbitals cannot be
localized in AA only. Most importantly, one finds that
the Bloch function is not only invariant under C3z, but
also possesses well defined symmetry properties under
C2z and C2x, specifically it is odd under the former, cf.
panel layer #1 A with panel layer #1 B, and even un-
der the latter, cf. panel #1 A with panel layer #2 B.

FIG. 6: Layer #1 and sublattice (A-B) components of s1(r)
(left panel) and s2(r) (right panel). The colour of each point
indicates its complex phase, while its size is a measure of its
square modulus. Each unit cell (black dashed line in top left
panel) has been replicated 3 times to improve visibility.

Similarly, the other state within the lower doublet is still
even under C2x, but also even under C2z. That doublet
thus transforms with respect to C2x as an s-orbital. On
the contrary, the upper doublet is odd under C2x, thus
transforming as a pz-orbital, one state being even and
the other odd under C2z. We thus conclude that close to
the charge neutrality point the effective symmetry group
is actually D6,10,17,18 and hence contains also C2z, even
if the relaxed structure lacks any point symmetry.

We stress in addition that the double degeneracy of
the mini-bands at Γ is generically not to be expected
even assuming D6 symmetry. The accidental degeneracy
is due to the fact that the coupling between the Dirac
points, which originally belonged to different layers and
correspond to the same momentum K1 or K2 in the re-
duced Brillouin zone, effectively vanishes at small twist
angles,4 even though symmetry does not prohibit this
coupling to be finite. This phenomenon corresponds to
an additional emergent symmetry, dynamical in nature
(some textbooks would call it accidental), often referred
as valley charge conservation Uv(1) symmetry.10,16.

If so, AB and BA being equivalent, the function φk(r),
see Eqs. (1), (6), (13) and (14), at Γ can be written as

φΓ(r) = 3A(r)± 3A′(r) , (15)

i.e., sum or difference of the AB and BA components.
Since the two combinations cannot be degenerate, in or-
der to describe the band structure we need at least two
different s-like and two different pz-like orbitals for each
sublattice AB or BA. It thus follows that there must be
two additional doublets above or below the flat-bands,
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one of s-type and another of pz-type, both invariant un-
der C3z. As can be seen in Fig. 4(b) and (c), above the
flat-bands at Γ there are two fourfold degenerate lev-
els that actually transform as the two-dimensional irre-
ducible representation, and hence are not invariant under
C3z. The next two states (upper red circle) have instead
the right symmetry properties, i.e., they are invariant
under three-fold rotations and have well defined parity,
actually odd, under C2x (one being even and one odd
with respect to C2z). This doublet is therefore the part-
ner of the pz-doublet in the mini band. The same holds
in the lower energy bands (lower green circle). With the
only difference that the doublet is now even under C2x,
hence it is the partner of the s-doublet in the mini band.
Let us focus for instance on the two s-orbitals, and de-
note 3A(r) either as s1(r) or s2(r), and similarly 3A′(r)
as s′1(r) or s′2(r). We assume that the s-doublet below
the mini bands corresponds to the AB+BA combination,
hence, through Eqs. (13) and (14),

φ
(1+)
Γ (r) = s1(r) + s′1(r) ,

φ
(2+)
Γ (r) = s2(r) + s′2(r) .

(16)

If φ(1+)
Γ is chosen to be even under C2z, so that φ(2+)

Γ is
odd, then

s′1 = C2z
(
s1
)
, s′2 = −C2z

(
s2
)
. (17)

The s-doublet within the mini bands must therefore be
the AB-BA combination

φ
(1−)
Γ (r) = s1(r)− s′1(r) ,

φ
(2−)
Γ (r) = s2(r)− s′2(r) ,

(18)

so that φ(1−)Γ is odd under C2z, while φ
(2−)
Γ even. It fol-

lows that taking either the sum or the difference between
two states belonging to different s-doublets with opposite
parity under C2z, we should find wavefunctions centred
either in AB or BA. This is indeed the case. In Fig. 6
we show the layer #1 sublattice components of s1(r), left
panel, and s2(r), right panel. The components on layer
#2 can be obtained through C2x, and the functions s′1(r)
and s′2(r) on the sublattice BA through C2z. We can re-
peat a similar analysis to find the two pz-type functions,
p1(r) and p2(r), which are shown in Fig. 7.

We conclude by stressing that the same symmetry
partners of the mini band levels at Γ are no less than
300 meV away from them, and in between there are sev-
eral states with different symmetry. However, as soon as
we move away from Γ all those states will be coupled to
each other by the Hamiltonian, and thus a description in
terms only of few of them is hardly possible.

B. Bloch functions at K

At the high-symmetry points K1 and K2 = −K1 the
AB and BA Wannier functions are effectively decoupled

and degenerate. However, the outcome of numerical diag-
onalization is a generic linear combination of the degen-
erate levels. Therefore, in order to identify AB and BA
components, we introduced a small perturbation in the
Hamiltonian that makes AB and BA inequivalent while
preserving the C3z symmetry:

V (r) = −
3∑
j=1

2V0sin(gj · r), (19)

where g1 = G1, g2 = G2, g3 = −G1 − G2, and
V0 ≈ 1 µeV. This function is maximum in AB, min-
imum in BA and zero in AA. By doing so, the fourfold
degenerate states at K1/2 are split by a tiny gap (less
than 0.2 µeV) in two doublets, the lower/upper one com-
posed by Bloch states that are combination of BA/AB
Wannier orbitals only. In such a way, we can directly ob-
tain the proper lattice-symmetric functions E±1(r) and
E′±1(r) through Eqs. (13) and (14). Since there are four
states at K1/2, there will be two different E+1(r),and
similarly for all the other components. In Fig. 8 we show
the layer and sublattice components of one of the two
degenerate Bloch functions at K1 centred on AB. We
note that this Bloch functions transforms under C3z as
the expected E−1(r), see Eq. (13). We did check that all
other Bloch functions at K1 and K2 are compatible with
Eqs. (13) and (14).

FIG. 7: Layer #1 and sublattice (A-B) components of p1(r)
(left panel) and p2(r) (right panel). The colour of each point
indicates its complex phase, while its size is a measure of its
square modulus. Each unit cell (black dashed line in top left
panel) has been replicated 3 times to improve visibility
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layer #1 A layer #1 B layer #2 A layer #2 B

−π

−π/2

0

π/2

π

AA

AB

BA

AB AB AB

FIG. 8: Layer and sublattice components in the unit cell of
one of the two degenerate Bloch functions at K1 whose Wan-
nier orbitals are centred on AB.

V. CONCLUSIONS

We presented a theoretical and numerical analysis
of the electronic structure associated with the fully
relaxed geometric structure of a twisted bilayer graphene
at small twist angles, which must be relevant for the
intriguing behavior observed in recent experiments.1–3
In particular, with state-of-the-art techniques, we
model both the in-plane and out-of-plane atomic re-
laxations, and we show that they play a crucial role in
reproducing the experimentally observed one-electron
band gaps. By performing an extensive study of the
Bloch eigenfunctions at the high symmetry points, we
are able to single out the symmetry properties and
in fact the rather subtle nature of the corresponding
Wannier orbitals. The results are consistent with a
D6 symmetry, which emerges despite the absence of
an a priori lattice structure point group symmetry, as
well as with a valley charge-conservation Uv(1). These
emerging symmetries are robust features of small angle
twisted bilayer graphene. Moreover, even though the

flat bands are well separated from the rest, in order to
simultaneously describe the physics at both the K and
Γ points, one necessarily has to consider an enlarged set
of Wannier orbitals, at least eight but most likely much
more. The impact of these results in our understanding
of the observed phenomena in twisted graphene bilayers
will be the subject of a future work.
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Note added: After completion of the present study, we
became aware of a recent preprint,32 which also reports a
relaxed structure with some similar features of the model
shown here.
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