1,791 research outputs found

    MET 303-002: Applied Thermodynamics

    Get PDF

    Hemostatic factors and risk of coronary heart disease in general populations: new prospective study and updated meta-analyses

    Get PDF
    <p>Background: Activation of blood coagulation and fibrinolysis may be associated with increased risk of coronary heart disease. We aimed to assess associations of circulating tissue plasminogen activator (t-PA) antigen, D-dimer and von Willebrand factor (VWF) with coronary heart disease risk.</p> <p>Design: Prospective case-control study, systematic review and meta-analyses.</p> <p>Methods: Measurements were made in 1925 people who had a first-ever nonfatal myocardial infarction or died of coronary heart disease during follow-up (median 19.4 years) and in 3616 controls nested within the prospective population-based Reykjavik Study.</p> <p>Results: Age and sex-adjusted odds ratios for coronary heart disease per 1 standard deviation higher baseline level were 1.25 (1.18, 1.33) for t-PA antigen, 1.01 (0.95, 1.07) for D-dimer and 1.11 (1.05, 1.18) for VWF. After additional adjustment for conventional cardiovascular risk factors, corresponding odds ratios were 1.07 (0.99, 1.14) for t-PA antigen, 1.06 (1.00, 1.13) for D-dimer and 1.08 (1.02, 1.15) for VWF. When combined with the results from previous prospective studies in a random-effects meta-analysis, overall adjusted odds ratios were 1.13 (1.06, 1.21) for t-PA antigen (13 studies, 5494 cases), 1.23 (1.16, 1.32) with D-dimer (18 studies, 6799 cases) and 1.16 (1.10, 1.22) with VWF (15 studies, 6556 cases).</p> <p>Conclusions: Concentrations of t-PA antigen, D-dimer and VWF may be more modestly associated with first-ever CHD events than previously reported. More detailed analysis is required to clarify whether these markers are causal risk factors or simply correlates of coronary heart disease.</p&gt

    Direct conversion of human pluripotent stem cells into cranial motor neurons using a piggyBac vector

    Get PDF
    Human pluripotent stem cells (PSCs) are widely used for in vitro disease modeling. One of the challenges in the field is represented by the ability of converting human PSCs into specific disease-relevant cell types. The nervous system is composed of a wide variety of neuronal types with selective vulnerability in neurodegenerative diseases. This is particularly relevant for motor neuron diseases, in which different motor neurons populations show a different susceptibility to degeneration. Here we developed a fast and efficient method to convert human induced Pluripotent Stem Cells into cranial motor neurons of the branchiomotor and visceral motor subtype. These populations represent the motor neuron subgroup that is primarily affected by a severe form of amyotrophic lateral sclerosis with bulbar onset and worst prognosis. This goal was achieved by stable integration of an inducible vector, based on the piggyBac transposon, allowing controlled activation of Ngn2, Isl1 and Phox2a (NIP). The NIP module effectively produced electrophysiologically active cranial motor neurons. Our method can be easily extended to PSCs carrying disease-associated mutations, thus providing a useful tool to shed light on the cellular and molecular bases of selective motor neuron vulnerability in pathological conditions

    Basal adenosine modulates the functional properties of AMPA receptors in mouse hippocampal neurons through the activation of A1R A2AR and A3R

    Get PDF
    Adenosine is a widespread neuromodulator within the CNS and its extracellular level is increased during hypoxia or intense synaptic activity, modulating pre- and postsynaptic sites. We studied the neuromodulatory action of adenosine on glutamatergic currents in the hippocampus, showing that activation of multiple adenosine receptors (ARs) by basal adenosine impacts postsynaptic site. Specifically, the stimulation of both A1R and A3R reduces AMPA currents, while A2AR has an opposite potentiating effect. The effect of ARs stimulation on glutamatergic currents in hippocampal cultures was investigated using pharmacological and genetic approaches. A3R inhibition by MRS1523 increased GluR1-Ser845 phosphorylation and potentiated AMPA current amplitude, increasing the apparent affinity for the agonist. A similar effect was observed blocking A1R with DPCPX or by genetic deletion of either A3R or A1R. Conversely, impairment of A2AR reduced AMPA currents, and decreased agonist sensitivity. Consistently, in hippocampal slices, ARs activation by AR agonist NECA modulated glutamatergic current amplitude evoked by AMPA application or afferent fiber stimulation. Opposite effects of AR subtypes stimulation are likely associated to changes in GluR1 phosphorylation and represent a novel mechanism of physiological modulation of glutamatergic transmission by adenosine, likely acting in normal conditions in the brain, depending on the level of extracellular adenosine and the distribution of AR subtypes

    Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s Disease in the 3xTg-AD mouse model

    Get PDF
    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. In the pathogenesis of AD a pivotal role is played by two neurotoxic proteins that aggregate and accumulate in the central nervous system: amyloid beta and hyper-phosphorylated tau. Accumulation of extracellular amyloid beta plaques and intracellular hyper-phosphorylated tau tangles, and consequent neuronal loss begins 10-15 years before any cognitive impairment. In addition to cognitive and behavioral deficits, sensorial abnormalities have been described in AD patients and in some AD transgenic mouse models. Retina can be considered a simple model of the brain, as some pathological changes and therapeutic strategies from the brain may be observed or applicable to the retina. Here we propose new retinal biomarkers that could anticipate the AD diagnosis and help the beginning and the follow-up of possible future treatments. We analyzed retinal tissue of triple-transgenic AD mouse model (3xTg-AD) for the presence of pathological hallmarks during disease progression. We found the presence of amyloid beta plaques, tau tangles, neurodegeneration, and astrogliosis in the retinal ganglion cell layer of 3xTg-AD mice, already at pre-symptomatic stage. Moreover, retinal microglia in pre-symptomatic mice showed a ramified, anti-inflammatory phenotype which, during disease progression, switches to a pro-inflammatory, less ramified one, becoming neurotoxic. We hypothesize retina as a window through which monitor AD-related neurodegeneration process

    Sustainability along the value chain: collaborative approaches and their impact on firm performance

    Get PDF
    Heeding the call for a deeper understanding of the key differences in corporate approaches to sustainable supply chain management (SSCM) and their impact on performance, we collect and analyse data on a sample of 91 Italian firms in the consumer product industry engaged in upstream and downstream sustainability initiatives. Results show that companies differ in the extent to which sustainability is shared along the chain. Yet, the more companies collaborate through a strong sustainability orientation, the higher the impact on supply-chain related performance, with companies adopting a proactive attitude to SSCM being able to benefit the most from it

    Molecular imaging of tau protein: new insights and future directions

    Get PDF
    Tau is a microtubule-associated protein (MAPT) that is highly expressed in neurons and implicated in several cellular processes. Tau misfolding and self-aggregation give rise to proteinaceous deposits known as neuro-fibrillary tangles. Tau tangles play a key role in the genesis of a group of diseases commonly referred to as tauopathies; notably, these aggregates start to form decades before any clinical symptoms manifest. Advanced imaging methodologies have clarified important structural and functional aspects of tau and could have a role as diagnostic tools in clinical research. In the present review, recent progresses in tau imaging will be discussed. We will focus mainly on super-resolution imaging methods and the development of near-infrared fluorescent probes

    Chemokine fractalkine/CX3CL1 negatively modulates active glutamatergic synapses in rat hippocampal neurons

    Get PDF
    We examined the effects of the chemokine fractalkine (CX3CL1) on EPSCs evoked by electrical stimulation of Schaffer collaterals in patch-clamped CA1 pyramidal neurons from rat hippocampal slices. Acute application of CX3CL1 caused a sustained reduction of EPSC amplitude, with partial recovery after washout. CX3CL1-induced EPSC depression is postsynaptic in nature, because paired-pulse ratio was maintained, amplitude distribution of spontaneous excitatory postsynaptic currents shifted to lower values, and whole-cell current responses to AMPA were reversibly inhibited. EPSC depression by CX3CL1 is mediated by CX3CL1 receptor (CX3CR1), because CX3CL1 was unable to influence EPSC amplitude in CA1 pyramidal neurons from CX3CR1 knock-out mice. CX3CL1-induced depression of both EPSC and AMPA current was not observed in the absence of afferent fiber stimulation or AMPA receptor activation, respectively, indicating the requirement of sustained receptor activity for its development. Findings obtained from hippocampal slices, cultured hippocampal neurons, and transfected human embryonic kidney cells indicate that a Ca2+-, cAMP-, and phosphatase-dependent process is likely to modulate CX3CL1 effects because of the following: (1) CX3CL1-induced depression was antagonized by intracellular BAPTA, 8Br-cAMP, phosphatase inhibitors, and pertussis toxin (PTX); (2) CX3CL1 inhibited forskolin-induced cAMP formation sensitive to PTX; and (3) CX3CL1 inhibited forskolin-induced Ser845 GluR1 phosphorylation, which was sensitive to PTX and dependent on Ca2+ and phosphatase activity. Together, these findings indicate that CX3CL1 negatively modulates AMPA receptor function at active glutamatergic synapses through cell-signaling pathways by influencing the balance between kinase and phosphatase activity
    • …
    corecore