1,588 research outputs found

    Research achievements in under-deck and combined cable-stayed bridges

    Get PDF
    Under-deck cable-stayed bridges and combined cable-stayed bridges constitute two innovative bridge types that have been designed and built on only a few occasions over the last thirty years by outstanding structural engineers, such as Leonhardt, Schlaich, Menn, Virlogeux, Manterola, and Cremer. In these bridge types, the stay cables have unconventional layouts: below the deck, in the case of under-deck cable-stayed bridges, and above and below the deck, in the case of combined cable-stayed bridges. Over the last few years, major research advances related to these bridge types have been made to the point that now research dictates the development of these new bridge typologies. In this communication, a general overview of the current state-of-art will be set out; addressing issues related to built bridges, research developments, structural behaviour, design criteria and potential applications for these innovative bridge types. Major attention will be paid to their highly-efficient structural behaviour, that allows a significant reduction in the amounts of materials in comparison with conventional bridges, leading to sustainable design. Other advantages of these structural types, such as the numerous construction possibilities, aesthetical properties, and broad range of potential applications, will also be stressed

    Systemic transport of Alfalfa mosaic virus can be mediated by the movement proteins of several viruses assigned to five genera of the 30K family

    Full text link
    We previously showed that the movement protein (MP) gene of Alfalfa mosaic virus (AMV) is functionally exchangeable for the cell-to-cell transport of the corresponding genes of Tobacco mosaic virus (TMV), Brome mosaic virus, Prunus necrotic ringspot virus, Cucumber mosaic virus and Cowpea mosaic virus. We have analysed the capacity of the heterologous MPs to systemically transport the corresponding chimeric AMV genome. All MPs were competent in systemic transport but required the fusion at their C terminus of the coat protein-interacting C-terminal 44 aa (A44) of the AMV MP. Except for the TMV MP, the presence of the hybrid virus in upper leaves correlated with the capacity to move locally. These results suggest that all the MPs assigned to the 30K superfamily should be exchangeable not only for local virus movement but also for systemic transport when the A44 fragment is present.We thank L. Corachan for her excellent technical assistance. This work was supported by the Spanish granting agency DGICYT via grant BIO2011-25018 and by the Generalitat Valenciana via grant PROMETEO 2011-003.Fajardo, TVM.; Peiró Morell, A.; Pallás Benet, V.; Sanchez Navarro, JA. (2013). Systemic transport of Alfalfa mosaic virus can be mediated by the movement proteins of several viruses assigned to five genera of the 30K family. Journal of General Virology. 94:677-681. https://doi.org/10.1099/vir.0.048793-0S6776819

    Alumnos de nuevo ingreso en ingeniería: un análisis de competencias matemáticas básicas

    Get PDF
    En este trabajo se realiza un estudio estadístico descriptivo de los resultados que el alumnado en el grado de ingeniería informática de la Universidad Pablo de Olavide obtuvieron al resolver las cuestiones que les fueron planteadas en un aprueba inicial, al comienzo del curso académico, donde se planteaban cuestiones para obtener información sobre el nivel de competencias matemáticas básicas a nivel de secundaria que tales alumnos tenían. Además, a mediados del curso, al comienzo del segundo cuatrimestre se realizó una nueva prueba de control para ver la evolución del alumnado en cuestión después de haber cursado un semestre de álgebra o cálculo

    LA I&D como factor determinante en el valor de la empresa: evidencia empírica

    Get PDF
    LA I&D como factor determinante en el valor de la empresa: evidencia empírica

    ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees

    Get PDF
    [EN] In the primary root and young hypocotyl of Arabidopsis, ACAULIS5 promotes translation of SUPPRESSOR OF ACAULIS51 (SAC51) and thereby inhibits cytokinin biosynthesis and vascular cell division. In this study, the relationships between ACAULIS5, SAC51 and cytokinin biosynthesis were investigated during secondary growth of Populus stems. Overexpression of ACAULIS5 from the constitutive 35S promoter in hybrid aspen (Populus tremula x Populus tremuloides) trees suppressed the expression level of ACAULIS5, which resulted in low levels of the physiologically active cytokinin bases as well as their direct riboside precursors in the transgenic lines. Low ACAULIS5 expression and low cytokinin levels of the transgenic trees coincided with low cambial activity of the stem. ACAULIS5 therefore, contrary to its function in young seedlings in Arabidopsis, stimulates cytokinin accumulation and cambial activity during secondary growth of the stem. This function is not derived from maturing secondary xylem tissues as transgenic suppression of ACAULIS5 levels in these tissues did not influence secondary growth. Interestingly, evidence was obtained for increased activity of the anticlinal division of the cambial initials under conditions of low ACAULIS5 expression and low cytokinin accumulation. We propose that ACAULIS5 integrates auxin and cytokinin signaling to promote extensive secondary growth of tree stems.This research was supported by the Swedish Research Council Formas (grant no. 232-2009-1698), the Swedish Research Council VR (grant no. 621-2013-4949), Vinnova (grant no. 201600504), Knut and Alice Wallenberg Foundation (grant no. 2016-0341), Fundacao para a Ciencia e Tecnologia (FCT), through CEEC/IND/00175/2017 contract to AM, FCT R&D Unit grants to GREEN-IT -Bioresources for Sustainability (grant no. UIDB/04551/2020), BioISI (grants nos. UIDB/04046/2020 and UIDP/04046/2020), the Spanish Ministry of Economy and Innovation (grant no. BFU2016-80621-P), and the Ministry of Education, Youth and Sports, Czech Republic through the European Regional Development Fund-Project "Plants as a Tool for Sustainable Global Development" (grant no. CZ.02.1.01/0.0/0.0/16_019/0000827).Milhinhos, A.; Bollhoner, B.; Blazquez Rodriguez, MA.; Novak, O.; Miguel, CM.; Tuominen, H. (2020). ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees. Frontiers in Plant Science. 11:1-11. https://doi.org/10.3389/fpls.2020.601858S11111Agusti, J., Herold, S., Schwarz, M., Sanchez, P., Ljung, K., Dun, E. A., … Greb, T. (2011). Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences, 108(50), 20242-20247. doi:10.1073/pnas.1111902108Antoniadi, I., Plačková, L., Simonovik, B., Doležal, K., Turnbull, C., Ljung, K., & Novák, O. (2015). Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex. The Plant Cell, 27(7), 1955-1967. doi:10.1105/tpc.15.00176Baima, S., Forte, V., Possenti, M., Peñalosa, A., Leoni, G., Salvi, S., … Morelli, G. (2014). Negative Feedback Regulation of Auxin Signaling by ATHB8/ACL5–BUD2 Transcription Module. Molecular Plant, 7(6), 1006-1025. doi:10.1093/mp/ssu051Bollhöner, B., Jokipii-Lukkari, S., Bygdell, J., Stael, S., Adriasola, M., Muñiz, L., … Tuominen, H. (2017). The function of two type II metacaspases in woody tissues of Populus trees. New Phytologist, 217(4), 1551-1565. doi:10.1111/nph.14945Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113-116. doi:10.1007/bf02670468Clay, N. K., & Nelson, T. (2005). Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport. Plant Physiology, 138(2), 767-777. doi:10.1104/pp.104.055756De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E., Novák, O., … Weijers, D. (2014). Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science, 345(6197). doi:10.1126/science.1255215Endo, S., Iwamoto, K., & Fukuda, H. (2017). Overexpression and cosuppression of xylem-related genes in an early xylem differentiation stage-specific manner by the AtTED4 promoter. Plant Biotechnology Journal, 16(2), 451-458. doi:10.1111/pbi.12784Etchells, J. P., Provost, C. M., & Turner, S. R. (2012). Plant Vascular Cell Division Is Maintained by an Interaction between PXY and Ethylene Signalling. PLoS Genetics, 8(11), e1002997. doi:10.1371/journal.pgen.1002997Fischer, U., Kucukoglu, M., Helariutta, Y., & Bhalerao, R. P. (2019). The Dynamics of Cambial Stem Cell Activity. Annual Review of Plant Biology, 70(1), 293-319. doi:10.1146/annurev-arplant-050718-100402Hanzawa, Y., Takahashi, T., & Komeda, Y. (1997). ACL5: an Arabidopsis gene required for internodal elongation after flowering. The Plant Journal, 12(4), 863-874. doi:10.1046/j.1365-313x.1997.12040863.xHanzawa, Y. (2000). ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. The EMBO Journal, 19(16), 4248-4256. doi:10.1093/emboj/19.16.4248Imai, A., Hanzawa, Y., Komura, M., Yamamoto, K. T., Komeda, Y., & Takahashi, T. (2006). The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 133(18), 3575-3585. doi:10.1242/dev.02535Imai, A., Komura, M., Kawano, E., Kuwashiro, Y., & Takahashi, T. (2008). A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of theacl5mutant inArabidopsis thaliana. The Plant Journal, 56(6), 881-890. doi:10.1111/j.1365-313x.2008.03647.xImmanen, J., Nieminen, K., Duchens Silva, H., Rodríguez Rojas, F., Meisel, L. A., Silva, H., … Helariutta, Y. (2013). Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica. BMC Genomics, 14(1). doi:10.1186/1471-2164-14-885Immanen, J., Nieminen, K., Smolander, O.-P., Kojima, M., Alonso Serra, J., Koskinen, P., … Helariutta, Y. (2016). Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity. Current Biology, 26(15), 1990-1997. doi:10.1016/j.cub.2016.05.053Kakehi, J.-I., Kawano, E., Yoshimoto, K., Cai, Q., Imai, A., & Takahashi, T. (2015). Mutations in Ribosomal Proteins, RPL4 and RACK1, Suppress the Phenotype of a Thermospermine-Deficient Mutant of Arabidopsis thaliana. PLOS ONE, 10(1), e0117309. doi:10.1371/journal.pone.0117309Karimi, M., Inzé, D., & Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7(5), 193-195. doi:10.1016/s1360-1385(02)02251-3Knott, J. M., Römer, P., & Sumper, M. (2007). Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081-3086. doi:10.1016/j.febslet.2007.05.074Koncz, C., & Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular and General Genetics MGG, 204(3), 383-396. doi:10.1007/bf00331014Larson, P. R. (1994). The Vascular Cambium. Springer Series in Wood Science. doi:10.1007/978-3-642-78466-8Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262Milhinhos, A., Prestele, J., Bollhöner, B., Matos, A., Vera-Sirera, F., Rambla, J. L., … Miguel, C. M. (2013). Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism inPopulusxylem. The Plant Journal, 75(4), 685-698. doi:10.1111/tpj.12231Milhinhos, A., Vera-Sirera, F., Blanco-Touriñán, N., Mari-Carmona, C., Carrió-Seguí, À., Forment, J., … Agustí, J. (2019). SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proceedings of the National Academy of Sciences, 116(37), 18710-18716. doi:10.1073/pnas.1807863116Muñiz, L., Minguet, E. G., Singh, S. K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C. L., … Tuominen, H. (2008). ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development, 135(15), 2573-2582. doi:10.1242/dev.019349Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.xNieminen, K., Immanen, J., Laxell, M., Kauppinen, L., Tarkowski, P., Dolezal, K., … Helariutta, Y. (2008). Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Sciences, 105(50), 20032-20037. doi:10.1073/pnas.0805617106Nilsson, O., Aldén, T., Sitbon, F., Anthony Little, C. H., Chalupa, V., Sandberg, G., & Olsson, O. (1992). Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgenic Research, 1(5), 209-220. doi:10.1007/bf02524751Ohashi-Ito, K., Saegusa, M., Iwamoto, K., Oda, Y., Katayama, H., Kojima, M., … Fukuda, H. (2014). A bHLH Complex Activates Vascular Cell Division via Cytokinin Action in Root Apical Meristem. Current Biology, 24(17), 2053-2058. doi:10.1016/j.cub.2014.07.050Ragni, L., Nieminen, K., Pacheco-Villalobos, D., Sibout, R., Schwechheimer, C., & Hardtke, C. S. (2011). Mobile Gibberellin Directly Stimulates Arabidopsis Hypocotyl Xylem Expansion  . The Plant Cell, 23(4), 1322-1336. doi:10.1105/tpc.111.084020Savidge, R. A. (1988). Auxin and ethylene regulation of diameter growth in trees. Tree Physiology, 4(4), 401-414. doi:10.1093/treephys/4.4.401Sibout, R., Plantegenet, S., & Hardtke, C. S. (2008). Flowering as a Condition for Xylem Expansion in Arabidopsis Hypocotyl and Root. Current Biology, 18(6), 458-463. doi:10.1016/j.cub.2008.02.070Smetana, O., Mäkilä, R., Lyu, M., Amiryousefi, A., Sánchez Rodríguez, F., Wu, M.-F., … Mähönen, A. P. (2019). High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature, 565(7740), 485-489. doi:10.1038/s41586-018-0837-0Sundell, D., Street, N. R., Kumar, M., Mellerowicz, E. J., Kucukoglu, M., Johnsson, C., … Hvidsten, T. R. (2017). AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in Populus tremula. The Plant Cell, 29(7), 1585-1604. doi:10.1105/tpc.17.00153Svačinová, J., Novák, O., Plačková, L., Lenobel, R., Holík, J., Strnad, M., & Doležal, K. (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods, 8(1). doi:10.1186/1746-4811-8-17Tiimonen, H., Häggman, H., Tsai, C.-J., Chiang, V., & Aronen, T. (2007). The seasonal activity and the effect of mechanical bending and wounding on the PtCOMT promoter in Betula pendula Roth. Plant Cell Reports, 26(8), 1205-1214. doi:10.1007/s00299-007-0331-xTuominen, H., Puech, L., Fink, S., & Sundberg, B. (1997). A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen. Plant Physiology, 115(2), 577-585. doi:10.1104/pp.115.2.577Vera-Sirera, F., De Rybel, B., Úrbez, C., Kouklas, E., Pesquera, M., Álvarez-Mahecha, J. C., … Blázquez, M. A. (2015). A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 35(4), 432-443. doi:10.1016/j.devcel.2015.10.022Vera-Sirera, F., Minguet, E. G., Singh, S. K., Ljung, K., Tuominen, H., Blázquez, M. A., & Carbonell, J. (2010). Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 48(7), 534-539. doi:10.1016/j.plaphy.2010.01.011Xu, M., Zhang, B., Su, X., Zhang, S., & Huang, M. (2011). Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Analytical Biochemistry, 408(2), 337-339. doi:10.1016/j.ab.2010.08.044Zürcher, E., Tavor-Deslex, D., Lituiev, D., Enkerli, K., Tarr, P. T., & Müller, B. (2013). A Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional Output of the Cytokinin Signaling Network in Planta      . Plant Physiology, 161(3), 1066-1075. doi:10.1104/pp.112.21176

    Probiotic edible films from bacterial cellulose/cashew tree gum

    Get PDF
    Edible films are thin layers of biopolymer-based materials, which are expected to help the packaging system in protecting food against environmental factors. Besides passive protection, edible films may also be carriers of active/bioactive components. Probiotic films are expected not only to bring health benefits to the consumers, but also to extend food microbial shelf life due to competitive effects of probiotics1. Bacterial cellulose (BC) has been presented as a promising matrix for immobilization of probiotics, protecting them against adverse factors e.g. stomach pH2. In this study, BC was combined to cashew tree gum (CG) to produce an edible film carrying a probiotic bacteria (Bacillus coagulans). CG was used to decrease the viscosity of film forming dispersions. Four films were produced: BC/CG/Pro (containing the probiotic B. coagulans), BC/CG/Pre (containing the prebiotic fructooligosaccharides FOS), BC/CG/Syn (containing both probiotic and prebiotic, making it synbiotic), and BC/CG (a control film). The presence of the probiotic and/or prebiotic affected the tensile properties of the films, especially the tensile strength. The survival rate of the probiotic on film drying and storage was increased by the presence of FOS. An in vitro digestibility test was also carried out on films, demonstrating that the bacteria in BC/CG/Pro films exhibited an enhanced survival rate on gastric environment when compared to the free probiotic.info:eu-repo/semantics/publishedVersio

    Jasmonic Acid Induces Tuberization of Potato Stolons Cultured in Vitro

    Full text link

    Criteria for efficient prevention of dissemination and successful eradication of Erwinia amylovora (the cause of fire blight) in Aragón, Spain

    Get PDF
    Erwinia amylovora was detected on pome fruits in the Aragón region (North-Eastern Spain), in a ca. 5 km radius area located in the mid Jalón river (mid Ebro Valley) in the province of Zaragoza, during 2000‒2003. Eight years have now passed since this pathogen was last detected, without new infections being reported in the same area. The bases for surveys and rapid eradication performed have been analyzed in detail to understand the reasons for the success in removing fireblight. The results demonstrate that intensive surveillance, risk assessment, plant analyses using accurate identification methods, and, especially, rapid total or selective eradication of infected trees in the plots have been very effective in preventing the generalized spread of fireblight and in delaying economic losses associated with this disease. Eradication and compensation to growers, estimated to cost approx. € 467,000, were clearly counterbalanced by the economic value of apple and pear production in the 2000‒2003 period (approx. € 368 million). Fire blight risk-assessment, using the MARYBLYT system, showed that climatic conditions in the studied area were favourable to infections during the analyzed period (1997‒2006). Molecular characterization of E. amylovora strains had revealed their homogeneity, suggesting that these fire blight episodes could have been caused by just one inoculum source, supporting the hypothesis that there was a unique introduction of E. amylovora in the studied area. Spatial spread of E. amylovora to trees was analyzed within six orchards, indicating an aggregated distribution model. This Spanish experience demonstrates the success of scientifically-based prevention methods that lead to the deployment of a fast and strict containment strategy, useful for other Mediterranean areassurveysrisk-assessmentspatial analysisstrain characterizationPublishe
    corecore