

## 4th INTERNATIONAL SYMPOSIUM ON BACTERIAL NANOCELLULOSE 3-4th October, 2019 Almeida Garrett Library Auditorium, Porto-Portugal

## P2: Probiotic edible films from bacterial cellulose/cashew tree gum

Ana Vitória Oliveira-Alcântara<sup>1</sup>, Ana Angel S. Abreu<sup>1</sup>, Catarina Gonçalves<sup>2</sup>, Pablo Fuciños<sup>2</sup>, Miguel A. Cerqueira<sup>2</sup>, Francisco M. P. da Gama<sup>3</sup>, Sueli Rodrigues<sup>1</sup>, <u>Henriette M. C. Azeredo<sup>4,5,\*</sup></u>
<sup>1</sup>Federal University of Ceara, Brazil; <sup>2</sup>International Iberian Nanotechnology Laboratory, Portugal; <sup>3</sup>University of Minho, Portugal; <sup>4</sup>Embrapa Agroindústria Tropical, Brazil; <sup>5</sup>Embrapa Instrumentação, Brazil.

## Abstract

Edible films are thin layers of biopolymer-based materials, which are expected to help the packaging system in protecting food against environmental factors. Besides passive protection, edible films may also be carriers of active/bioactive components. Probiotic films are expected not only to bring health benefits to the consumers, but also to extend food microbial shelf life due to competitive effects of probiotics<sup>1</sup>. Bacterial cellulose (BC) has been presented as a promising matrix for immobilization of probiotics, protecting them against adverse factors e.g. stomach pH<sup>2</sup>. In this study, BC was combined to cashew tree gum (CG) to produce an edible film carrying a probiotic bacteria (*Bacillus coagulans*). CG was used to decrease the viscosity of film forming dispersions. Four films were produced: BC/CG/Pro (containing the probiotic *B. coagulans*), BC/CG/Pre (containing the prebiotic fructooligosaccharides – FOS), BC/CG/Syn (containing both probiotic and prebiotic, making it synbiotic), and BC/CG (a control film). The presence of the probiotic and/or prebiotic on film drying and storage was increased by the presence of FOS. An *in vitro* digestibility test was also carried out on films, demonstrating that the bacteria in BC/CG/Pro films exhibited an enhanced survival rate on gastric environment when compared to the free probiotic.

## References

(1) Espitia, P.J.P., Batista, R.A., Azeredo, H.M.C., Otoni, C.G. (2016). Probiotics and their potential applications in active edible films and coatings. Food Research International, 90: 42.
(2) Fijałkowski, K., Peitler, D., Rakoczy, R., Żywicka, A. (2016). Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. LWT - Food Science and Technology, 68: 322.