10,693 research outputs found
Molar mass and solution conformation of branched alpha(1 - 4), alpha(1 - 6) Glucans. Part I: Glycogens in water
Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chromatography coupled to a differential pressure viscometer and dynamic light scattering. Rabbit, oyster and mussel glycogens consisted of one population of high molar mass (weight averages ranging from 4.6 x 106 to 1.1 x 107 g/mol) as demonstrated by sedimentation velocity and SEC-MALLS, whereas bovine glycogen had a bimodal distribution of significantly lower molar mass (1.0 x 105 and 4.5 x 105 g/mol). The spherical structure of all glycogen molecules was demonstrated in the slopes of the Mark-Houwink-Kuhn-Sakurada-type power-law relations for sedimentation coefficient (s20,wo), intrinsic viscosity ([η]), radius of gyration (rg,z) and radius of hydration (rH,z), respectively, and was further supported by the � (=rg,z/rH,z) function, the fractal dimension and the Perrin function. The degree of branching was estimated to be ∼10% from the shrinking factors, g′ (=[η]branched/[η]linear) and also h (=(f/fo)branched/(f/fo)linear), respectively, where (f/fo) is the translational frictional ratio, consistent with expectation. © 2007 Elsevier Ltd. All rights reserved
Test results of JPL LiSOCl sub 2 cells
In the development of high rate Li-SO-Cl2 cells for various applications, the goal is to achieve 300 watt-hours per kilogram at the C/2 (5 amp) rate in a D cell configuration. The JPL role is to develop the understanding of the performance, life, and safety limiting characteristics in the cell and to transfer the technology to a manufacturer to produce a safe, high quality product in a reproducible manner. The approach taken to achieve the goals is divided into four subject areas: cathode processes and characteristics; chemical reactions and safety; cell design and assembly; and performance and abuse testing. The progress made in each of these areas is discussed
Fast radio bursts and their gamma-ray or radio afterglows as Kerr-Newman black hole binaries
Fast radio bursts (FRBs) are radio transients lasting only about a few
milliseconds. They seem to occur at cosmological distances. We propose that
these events can be originated in the collapse of the magnetosphere of
Kerr-Newman black holes (KNBHs). We show that the closed orbits of charged
particles in the magnetosphere of these objects are unstable. After examining
the dependencies on the specific charge of the particle and the spin and charge
of the KNBH, we conclude that the resulting timescale and radiation mechanism
fit well with the extant observations of FRBs. Furthermore, we argue that the
merger of a KNBH binary is one of the plausible central engines for potential
gamma-ray or radio afterglow following a certain FRBs, and can also account for
gravitational wave (GW) events like GW 150914. Our model leads to predictions
that can be tested by combined multi-wavelength electromagnetic and GW
observations.Comment: 6 pages, 4 figures, accepted for publication in Ap
Obesity Moderates the Effects of Motivational Interviewing Treatment Outcomes in Fibromyalgia
Objective: Obesity is a common comorbid condition among patients with fibromyalgia (FM). Our objective was to assess if obesity moderates the treatment benefits of exercise-based motivational interviewing (MI) for FM.
Methods: This is a secondary data analysis of a completed clinical trial of 198 FM patients who were randomized to receive either MI or attention control (AC). Using body mass index (BMI) to divide participants into obese (BMI >=30 kg/m2) and non-obese (BMI <30 kg m2) groups, mixed linear models were used to determine interaction between treatment arms and obesity status with regards to the primary outcome of global FM symptom severity (Fibromyalgia Impact Questionnaire, FIQ). Secondary measures included pain intensity (Brief Pain Inventory, BPI), 6-minute walk test, and self-reported physical activity (Community Health Activities Model Program for Seniors).
Results: Of the 198 participants, 91 (46%) were non-obese and 107 (54%) were obese. On global FM symptom severity (FIQ), the interaction between treatment arms and obesity status was significant (P=0.02). In the non-obese group, MI was associated with a greater improvement in FIQ than AC. In the obese group, MI participants reported less improvement in FIQ compared to AC. The interaction analysis was also significant for BPI pain intensity (P=0.01), but not for the walk test and self-reported physical activity.
Discussion: This is the first study to show that obesity negatively affects the treatment efficacy of MI in patients with FM. Our findings suggest that exercise-based MI may be more effective if initiated after weight loss is achieved
NotiMind: responses to smartphone notifications as affective sensors
Today's mobile phone users are faced with large numbers of notifications on social media, ranging from new followers on Twitter and emails to messages received from WhatsApp and Facebook. These digital alerts continuously disrupt activities through instant calls for attention. This paper examines closely the way everyday users interact with notifications and their impact on users’ emotion. Fifty users were recruited to download our application NotiMind and use it over a five-week period. Users’ phones collected thousands of social and system notifications along with affect data collected via self-reported PANAS tests three times a day. Results showed a noticeable correlation between positive affective measures and keyboard activities. When large numbers of Post and Remove notifications occur, a corresponding increase in negative affective measures is detected. Our predictive model has achieved a good accuracy level using three different classifiers "in the wild" (F-measure 74-78% within-subject model, 72-76% global model). Our findings show that it is possible to automatically predict when people are experiencing positive, neutral or negative affective states based on interactions with notifications. We also show how our findings open the door to a wide range of applications in relation to emotion awareness on social and mobile communication
Graphene Transport at High Carrier Densities using a Polymer Electrolyte Gate
We report the study of graphene devices in Hall-bar geometry, gated with a
polymer electrolyte. High densities of 6 are
consistently reached, significantly higher than with conventional back-gating.
The mobility follows an inverse dependence on density, which can be correlated
to a dominant scattering from weak scatterers. Furthermore, our measurements
show a Bloch-Gr\"uneisen regime until 100 K (at 6.2 ),
consistent with an increase of the density. Ubiquitous in our experiments is a
small upturn in resistivity around 3 , whose origin is
discussed. We identify two potential causes for the upturn: the renormalization
of Fermi velocity and an electrochemically-enhanced scattering rate.Comment: 13 pages, 4 figures, Published Versio
BaFe2As2 Surface Domains and Domain Walls: Mirroring the Bulk Spin Structure
High-resolution scanning tunneling microscopy (STM) measurements on
BaFe2As2-one of the parent compounds of the iron-based superconductors-reveals
a (1x1) As-terminated unit cell on the (001) surface. However, there are
significant differences of the surface unit cell compared to the bulk: only one
of the two As atoms in the unit cell is imaged and domain walls between
different (1x1) regions display a C2 symmetry at the surface. It should have
been C2v if the STM image reflected the geometric structure of the surface or
the orthorhombic bulk. The inequivalent As atoms and the bias dependence of the
domain walls indicate that the origin of the STM image is primarily electronic
not geometric. We argue that the surface electronic topography mirrors the bulk
spin structure of BaFe2As2, via strong orbital-spin coupling
Comparison of High-Temperature Superconductors in Multi-Chip Module Applications
In the application of high-temperature superconductors (HTSCs) in multi-chip module (MCM) technology, it is first necessary to investigate the advantages and disadvantages of the various HTSC compounds. The standard criteria for comparing the suitability of HTSCs in electronics applications has been critical temperature (Tc )and critical current density (Jc ). It is also necessary to consider the physical properties of HTSCs in relation to the various processing techniques required in fabrication of MCMs. These techniques can be grouped into four main areas: deposition, patterning, packaging, and characterization. The four main HTSC materials, Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O, Tl,Ba-Ca-Cu-O and Hg-Ba-Ca-Cu-O, will be compared to determine which is most suitable for MCM application
Does Vibration Training Improve Physical Function and Quality of Life in Fibromyalgia Syndrome?
poster abstractExercise and physical activity recommendations are an integral component of the overall management of fibromyalgia. Unfortunately, despite the known health, fitness, and symptom relief benefits, underlying pain and fatigue prevent most from initiating (or maintaining) physical activity and exercise programs, thereby contributing to sedentary lifestyles that lead to low levels of aerobic and muscular fitness. Therefore, it is important to identify alternative approaches to exercise programming in the overall management of fibromyalgia. Vibration training is a relatively new approach to exercise that has been shown to elicit numerous benefits; however little is known about the effects of this training method in fibromyalgia. Therefore, the primary aim of this study is to evaluate the effects of vibration training in improving musculoskeletal function, balance and postural control, and health-related quality of life in patients diagnosed with fibromyalgia
- …
