123 research outputs found

    Experimental measurement of particle size effects on the self-heating ignition of biomass piles: Homogeneous samples of dust and pellets

    Get PDF
    Biomass can become an important fuel source for future power generation worldwide. However biomass piles are prone to self-heating and can lead to fire. When storing and transporting biomass, it is usually in the form of pellets which vary in diameter but are on average in the order of 7 mm. However, pellets tend to break up into smaller particles and into dust down to the µm size. For self-heating, size of particles is known to matter but the topic is poorly studied for biomass piles. This work presents an experimental study on the self-heating ignition behaviour of different particle sizes of wheat biomass. We study for the first time homogeneous samples from the dust scale to pellet diameter size, ranging from diameters of 300 µm to 6.5 mm. Experiments are done in an isothermal oven to find minimum ignition temperatures as a function of sample volume. The results are analysed using Frank-Kamenetskii theory. For the homogeneous biomass samples studied, we show that particle diameter variation does not bring a large change in self-heating ignition behaviour. The present work can be used to help quantify size effects on biomass ignition and help address the safety problems of biomass fires

    Electroexcitation of the Δ+ (1232) at Low Momentum Transfer

    Get PDF
    We report on new p(e, e\u27 p)π°. measurements at the Δ+(1232) resonance at the low momentum transfer region, where the mesonic cloud dynamics is predicted to be dominant and rapidly changing, offering a test bed for chiral effective field theory calculations. The new data explore the Q2 dependence of the resonant quadrupole amplitudes and for the first time indicate that the Electric and the Coulomb quadrupole amplitudes converge as Q2 -\u3e 0. The measurements of the Coulomb quadrupole amplitude have been extended to the lowest momentum transfer ever reached, and suggest that more than half of its magnitude is attributed to the mesonic cloud in this region. The new data disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The measurements indicate that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements

    Ignition sensitivity of solid fuel mixtures

    Get PDF
    Due to both environmental concerns and the depletion of the reserves of fossil fuels, alternative and more environmentally friendly fuels, such as biomass and waste products, are being considered for partial or full fossil fuel replacement. The main disadvantage of these products is their lower energy density compared to fossil fuels. To deal with this several heat and power generation facilities are co-firing fuel mixtures. These processes involve mixtures of flammable dusts whose ignitability and explosibility characteristics are not known and therefore present un-quantified safety risk to the new technologies. This study reports on these risks and on the reactivity characteristics of two and three components dust mixtures of coal/sewage-sludge/torrefied-wood-pellet. In particular chemical composition, ignition sensitivity parameters (including minimum ignition energy, minimum ignition temperature on a layer, minimum explosive concentration) and flame speed have been determined. In all cases the measured parameters for the mixtures were within the range defined by the lower and upper value of the constituent. However, the expected values do not agree with the experimentally obtained ones, providing more relaxed values than the ones needed on this facilities

    Steam exploded pine wood burning properties with particle size dependence

    Get PDF
    Power generation using waste material from the processing of agricultural crops can be a viable biomass energy source. However, there is scant data on their burning properties and this work presents measurements of the minimum explosion concentration (MEC), flame speed, deflagration index (Kst), and peak pressure for pulverised pine wood and steam exploded pine wood (SEPW). The ISO 1 m3 dust explosion vessel was used, modified to operate on relatively coarse particles, using a hemispherical dust disperser on the floor of the vessel and an external blast of 20 bar compressed air. The pulverized material was sieved into the size fractions <500 μm, <63 μm, 63–150 μm, 150–300 μm, 300–500 μm to study the coarse particles used in biomass power generation. The MEC (Ø) was measured to be leaner for finer size fraction with greater sensitivity of explosion. The measured peak Kst was 43–122 bar m/s and the maximum turbulent flame speeds ∼1.4–5.4 m/s depending on the size distribution of the fraction. These results show that the steam exploded pine biomass was more reactive than the raw pine, due to the finer particle size for the steam exploded biomass

    Search for a new gauge boson in the A′A' Experiment (APEX)

    Get PDF
    We present a search at Jefferson Laboratory for new forces mediated by sub-GeV vector bosons with weak coupling α′\alpha' to electrons. Such a particle A′A' can be produced in electron-nucleus fixed-target scattering and then decay to an e+e−e^+e^- pair, producing a narrow resonance in the QED trident spectrum. Using APEX test run data, we searched in the mass range 175--250 MeV, found no evidence for an A′→e+e−A'\to e^+e^- reaction, and set an upper limit of α′/α≃10−6\alpha'/\alpha \simeq 10^{-6}. Our findings demonstrate that fixed-target searches can explore a new, wide, and important range of masses and couplings for sub-GeV forces.Comment: 5 pages, 5 figures, references adde

    Electroexcitation of the Δ+(1232)\Delta^{+}(1232) at low momentum transfer

    Get PDF
    We report on new p(e,e′p)π∘(e,e^\prime p)\pi^\circ measurements at the Δ+(1232)\Delta^{+}(1232) resonance at the low momentum transfer region. The mesonic cloud dynamics is predicted to be dominant and rapidly changing in this kinematic region offering a test bed for chiral effective field theory calculations. The new data explore the low Q2Q^2 dependence of the resonant quadrupole amplitudes while extending the measurements of the Coulomb quadrupole amplitude to the lowest momentum transfer ever reached. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements
    • …
    corecore