19 research outputs found

    Characterization of the ovine ribosomal protein SA gene and its pseudogenes

    Get PDF
    Background: The ribosomal protein SA (RPSA), previously named 37-kDa laminin receptor precursor/67-kDa laminin receptor (LRP/LR) is a multifunctional protein that plays a role in a number of pathological processes, such as cancer and prion diseases. In all investigated species, RPSA is a member of a multicopy gene family consisting of one full length functional gene and several pseudogenes. Therefore, for studies on RPSA related pathways/pathologies, it is important to characterize the whole family and to address the possible function of the other RPSA family members. The present work aims at deciphering the RPSA family in sheep. Results: In addition to the full length functional ovine RPSA gene, 11 other members of this multicopy gene family, all processed pseudogenes, were identified. Comparison between the RPSA transcript and these pseudogenes shows a large variety in sequence identities ranging from 99% to 74%. Only one of the 11 pseudogenes, i.e. RPSAP7, shares the same open reading frame (ORF) of 295 amino acids with the RPSA gene, differing in only one amino acid. All members of the RPSA family were annotated by comparative mapping and fluorescence in situ hybridization (FISH) localization. Transcription was investigated in the cerebrum, cerebellum, spleen, muscle, lymph node, duodenum and blood, and transcripts were detected for 6 of the 11 pseudogenes in some of these tissues. Conclusions: In the present work we have characterized the ovine RPSA family. Our results have revealed the existence of 11 ovine RPSA pseudogenes and provide new data on their structure and sequence. Such information will facilitate molecular studies of the functional RPSA gene taking into account the existence of these pseudogenes in the design of experiments. It remains to be investigated if the transcribed members are functional as regulatory non-coding RNA or as functional proteins

    Use of Maximum Likelihood-Mixed Models to select stable reference genes: a case of heat stress response in sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reference genes with stable expression are required to normalize expression differences of target genes in qPCR experiments. Several procedures and companion software have been proposed to find the most stable genes. Model based procedures are attractive because they provide a solid statistical framework. NormFinder, a widely used software, uses a model based method. The pairwise comparison procedure implemented in GeNorm is a simpler procedure but one of the most extensively used. In the present work a statistical approach based in Maximum Likelihood estimation under mixed models was tested and compared with NormFinder and geNorm softwares. Sixteen candidate genes were tested in whole blood samples from control and heat stressed sheep.</p> <p>Results</p> <p>A model including gene and treatment as fixed effects, sample (animal), gene by treatment, gene by sample and treatment by sample interactions as random effects with heteroskedastic residual variance in gene by treatment levels was selected using goodness of fit and predictive ability criteria among a variety of models. Mean Square Error obtained under the selected model was used as indicator of gene expression stability. Genes top and bottom ranked by the three approaches were similar; however, notable differences for the best pair of genes selected for each method and the remaining genes of the rankings were shown. Differences among the expression values of normalized targets for each statistical approach were also found.</p> <p>Conclusions</p> <p>Optimal statistical properties of Maximum Likelihood estimation joined to mixed model flexibility allow for more accurate estimation of expression stability of genes under many different situations. Accurate selection of reference genes has a direct impact over the normalized expression values of a given target gene. This may be critical when the aim of the study is to compare expression rate differences among samples under different environmental conditions, tissues, cell types or genotypes. To select reference genes not only statistical but also functional and biological criteria should be considered. Under the method here proposed <it>SDHA/MDH1 </it>have arisen as the best set of reference genes to be used in qPCR assays to study heat shock in ovine blood samples.</p

    A SNP in the HSP90AA1 gene 5′ flanking region is associated with the adaptation to differential thermal conditions in the ovine species

    Get PDF
    Molecular chaperones have long been understood to be preferentially transcribed in response to multiple perturbations of the cellular homeostasis. In this study, several polymorphisms in the gene encoding the inducible form of the cytoplasmic Hsp90 (HSP90AA1) were addressed in 24 sheep breeds reared in different climatic regions of Europe, Africa, and Asia. Significant differences in the genotype frequencies for a C/G single nucleotide polymorphism (SNP) located at position −660 in the HSP90AA1 5′flanking region were found between the different breeds. Regression analyses reflected significant correlations (from 0.41 to 0.62) between the alternative genotypes of this polymorphism and several climatic and geographic variables characteristic of the regions where these breeds are reared. Real-time analysis revealed that animals bearing the CC−660 genotype presented higher expression levels than those presenting the CG−660 or GG−660 in summer, but not in spring. Mutation at −660 site seems to affect HSP90AA1 transcription rates which could have important effects on the adaptation to different environmental conditions in sheep. Thus, the variability found in the genotype frequencies for the SNP at −660 in the ovine HSP90AA1 locus could be the result of the different environmental pressures occurring in the regions where these breed are maintained.AGRAMA breeders association, CSIC-León (Spain), CITA-Aragón (Spain), Centro Nacional de Referencia de EETs (Spain), Universidad de Zaragoza (Spain), NEIKER-Vitoria (Spain), Centro de Investigación La Orden-Valdesequera Junta de Extremadura (Spain), Dr. Julián Garde from the Universidad de Castilla-La Mancha (Spain), INIA-Madrid (Spain), and Dr Maziek Murawski from the University of Cracow (Poland) have provided biological samples. We are also very grateful to Dr. Jaime Cubero from INIA for his logistic support and to Helen Neumann for the English corrections. RTA2006-00104-00-00 and RZ2004-28 INIA projects have provided refunding to develop the experimental work

    Changes in HSP gene and protein expression in natural scrapie with brain damage

    Get PDF
    Heat shock proteins (Hsp) perform cytoprotective functions such as apoptosis regulation and inflammatory response control. These proteins can also be secreted to the extracellular medium, acting as inflammatory mediators, and their chaperone activity permits correct folding of proteins and avoids the aggregation of anomalous isoforms. Several studies have proposed the implication of Hsp in prion diseases. We analysed the gene expression and protein distribution of different members of the Hsp27, Hsp70, and Hsp90 families in the central nervous system of sheep naturally infected with scrapie. Different expression profiles were observed in the areas analysed. Whereas changes in transcript levels were not observed in the cerebellum or medulla oblongata, a significant decrease in HSP27 and HSP90 was detected in the prefrontal cortex. In contrast, HSP73 was over-expressed in diencephalons of scrapie animals. Western blotting did not reveal significant differences in Hsp90 and Hsp70 protein expression between scrapie and control animals. Expression rates identified by real-time RT-PCR and western blotting were compared with the extent of classical scrapie lesions using stepwise regression. Changes in Hsp gene and protein expression were associated with prion protein deposition, gliosis and spongiosis rather than with apoptosis. Finally, immunohistochemistry revealed intense Hsp70 and Hsp90 immunolabelling in Purkinje cells of scrapie sheep. In contrast, controls displayed little or no staining in these cells. The observed differences in gene expression and protein distribution suggest that the heat shock proteins analysed play a role in the natural form of the disease

    Changes in HSP gene and protein expression in natural scrapie with brain damage

    Get PDF
    Heat shock proteins (Hsp) perform cytoprotective functions such as apoptosis regulation and inflammatory response control. These proteins can also be secreted to the extracellular medium, acting as inflammatory mediators, and their chaperone activity permits correct folding of proteins and avoids the aggregation of anomalous isoforms. Several studies have proposed the implication of Hsp in prion diseases. We analysed the gene expression and protein distribution of different members of the Hsp27, Hsp70, and Hsp90 families in the central nervous system of sheep naturally infected with scrapie. Different expression profiles were observed in the areas analysed. Whereas changes in transcript levels were not observed in the cerebellum or medulla oblongata, a significant decrease in HSP27 and HSP90 was detected in the prefrontal cortex. In contrast, HSP73 was overexpressed in diencephalons of scrapie animals. Western blotting did not reveal significant differences in Hsp90 and Hsp70 protein expression between scrapie and control animals. Expression rates identified by real-time RT-PCR and western blotting were compared with the extent of classical scrapie lesions using stepwise regression. Changes in Hsp gene and protein expression were associated with prion protein deposition, gliosis and spongiosis rather than with apoptosis. Finally, immunohistochemistry revealed intense Hsp70 and Hsp90 immunolabelling in Purkinje cells of scrapie sheep. In contrast, controls displayed little or no staining in these cells. The observed differences in gene expression and protein distribution suggest that the heat shock proteins analysed play a role in the natural form of the disease

    Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008) consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals.</p> <p>Results</p> <p>The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean F<sub>ST </sub>of 0.074, G<sub>ST </sub>of 0.081 and R<sub>ST </sub>of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08) mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision.</p> <p>Conclusion</p> <p>Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will facilitate the comprehensive management of these populations, which in combination with the actual breeding program to increase milk yield, will constitute a good strategy to preserve the breed.</p

    Syntenin controls migration, growth, proliferation, and cell cycle progression in cancer cells

    Get PDF
    The scaffold protein syntenin abounds during fetal life where it is important for developmental movements. In human adulthood, syntenin gain-of-function is increasingly associated with various cancers and poor prognosis. Depending on the cancer model analyzed, syntenin affects various signaling pathways. We previously have shown that syntenin allows syndecan heparan sulfate proteoglycans to escape degradation. This indicates that syntenin has the potential to support sustained signaling of a plethora of growth factors and adhesion molecules. Here, we aim to clarify the impact of syntenin loss-of-function on cancer cell migration, growth, and proliferation, using cells from various cancer types and syntenin shRNA and siRNA silencing approaches. We observed decreased migration, growth, and proliferation of the mouse melanoma cell line B16F10, the human colon cancer cell line HT29 and the human breast cancer cell line MCF7. We further documented that syntenin controls the presence of active β1 integrin at the cell membrane and G1/S cell cycle transition as well as the expression levels of CDK4, Cyclin D2, and Retinoblastoma proteins. These data confirm that syntenin supports the migration and growth of tumor cells, independently of their origin, and further highlight the attractiveness of syntenin as potential therapeutic target.status: publishe
    corecore