1,881 research outputs found

    The muonic longitudinal shower profiles at production

    Get PDF
    In this paper the longitudinal profile of muon production along the shower axis is studied. The characteristics of this distribution is investigated for different primary masses, zenith angles, primary energies, and different high energy hadronic models. It is found that the shape of this distribution displays universal features similarly to what is known for the electromagnetic profile. The relation between the muon production distribution and the longitudinal electromagnetic evolution is also discussed

    `Stringy' Newton-Cartan Gravity

    Get PDF
    We construct a "stringy" version of Newton-Cartan gravity in which the concept of a Galilean observer plays a central role. We present both the geodesic equations of motion for a fundamental string and the bulk equations of motion in terms of a gravitational potential which is a symmetric tensor with respect to the longitudinal directions of the string. The extension to include a non-zero cosmological constant is given. We stress the symmetries and (partial) gaugings underlying our construction. Our results provide a convenient starting point to investigate applications of the AdS/CFT correspondence based on the non-relativistic "stringy" Galilei algebra.Comment: 44 page

    A new spin-2 self-dual model in D=2+1D=2+1

    Full text link
    There are three self-dual models of massive particles of helicity +2 (or -2) in D=2+1D=2+1. Each model is of first, second, and third-order in derivatives. Here we derive a new self-dual model of fourth-order, \cL {SD}^{(4)}, which follows from the third-order model (linearized topologically massive gravity) via Noether embedment of the linearized Weyl symmetry. In fact, each self-dual model can be obtained from the previous one \cL {SD}^{(i)} \to \cL {SD}^{(i+1)}, i=1,2,3 by the Noether embedment of an appropriate gauge symmetry, culminating in \cL {SD}^{(4)}. The new model may be identified with the linearized version of \cL {HDTMG} = \epsilon^{\mu\nu\rho} \Gamma_{\mu\gamma}^\epsilon (\p_\nu\Gamma_{\epsilon\rho}^\gamma + (2/3)\Gamma_{\nu\delta}^\gamma \Gamma_{\rho\epsilon}^\delta) /8 m + \sqrt{-g}(R_{\mu\nu} R^{\nu\mu} - 3 R^2/8) /2 m^2 . We also construct a master action relating the third-order self-dual model to \cL {SD}^{(4)} by means of a mixing term with no particle content which assures spectrum equivalence of \cL {SD}^{(4)} to other lower-order self-dual models despite its pure higher derivative nature and the absence of the Einstein-Hilbert action. The relevant degrees of freedom of \cL {SD}^{(4)} are encoded in a rank-two tensor which is symmetric, traceless and transverse due to trivial (non-dynamic) identities, contrary to other spin-2 self-dual models. We also show that the Noether embedment of the Fierz-Pauli theory leads to the new massive gravity of Bergshoeff, Hohm and Townsend.Comment: 14 pages, no figures, typos fixed, reference (19) modifie

    The average longitudinal air shower profile: exploring the shape information

    Get PDF
    The shape of the extensive air shower (EAS) longitudinal profile contains information about the nature of the primary cosmic ray. However, with the current detection capabilities, the assessment of this quantity in an event-by-event basis is still very challenging. In this work we show that the average longitudinal profile can be used to characterise the average behaviour of high energy cosmic rays. Using the concept of universal shower profile it is possible to describe the shape of the average profile in terms of two variables, which can be already measured by the current experiments. These variables present sensitivity to both average primary mass composition and to hadronic interaction properties in shower development. We demonstrate that the shape of the average muon production depth profile can be explored in the same way as the electromagnetic profile having a higher power of discrimination for the state of the art hadronic interaction models. The combination of the shape variables of both profiles provides a new powerful test to the existing hadronic interaction models, and may also provide important hints about multi-particle production at the highest energies.Peer Reviewe
    • …
    corecore