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Abstract

We construct a ‘stringy’ version of Newton–Cartan gravity in which the concept

of a Galilean observer plays a central role. We present both the geodesic

equations of motion for a fundamental string and the bulk equations of motion

in terms of a gravitational potential which is a symmetric tensor with respect

to the longitudinal directions of the string. The extension to include a nonzero

cosmological constant is given.We stress the symmetries and (partial) gaugings

underlying our construction. Our results provide a convenient starting point to

investigate applications of the AdS/CFT correspondence based on the non-

relativistic ‘stringy’ Galilei algebra.

PACS numbers: 04.20.Cv, 04.25.Nx

1. Introduction

Einstein’s special relativity is based on an equivalence between frames that are connected to

each other by the Poincaré symmetries, consisting of translations and Lorentz transformations

in a D-dimensional spacetime3. The extension to general relativity can be viewed as the

gauge theory of these Poincaré transformations where the constant parameters of the different

transformations have been promoted to arbitrary functions of the spacetime coordinates

xµ (µ = 0, 1, . . . , D − 1). This leads to a theory invariant under general coordinate

transformations. In general relativity, the curvature of spacetime is described by an invertible

metric function gµν (x) which is symmetric in the spacetime indices and which replaces

the Minkowski metric ηµν of flat spacetime corresponding to special relativity. The equations

of motion for the metric function are given by the well-known Einstein’s equations of motion

which are basically a set of second-order differential equations for gµν (x) with the energy–

momentum tensor as a source term. The equation of motion of a particle moving in a curved

3 Since our arguments do not depend on the dimension, we keep the dimension D of spacetime arbitrary.
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spacetime is given by the geodesic equation corresponding to that spacetime. All equations

transform covariantly with respect to general coordinate transformations.

One of the observations underlying general relativity is that an observer in a local ‘free-

falling’ frame does not experience any gravitational force. Consequently, the equation of

motion of a particle in such a frame describes a straight line corresponding to motion with

a constant velocity. These equations of motion transform covariantly under the Poincaré

symmetries of special relativity. Indeed, locally, general relativity coincides with special

relativity corresponding to gµν (x) = ηµν .

To apply general relativity in practical situations, it is often convenient to consider the

Newtonian limit which is defined as the limit of small velocities v ¿ c with respect to the

speed of light c, and a slowly varying and weak gravitational field. The Newtonian limit is not

the unique non-relativistic limit of general relativity. It is a specific limit which is based on the

assumption that particles are the basic entities and it further makes the additional assumption

of a slowly varying and weak gravitational field. In this work, we will encounter different

limits which are based on strings or, more general, branes, as the basic objects, and which do

not necessarily assume a slowly varying and weak gravitational field.

Taking the Newtonian limit, there is a universal time t and there is only equivalence

between frames that are connected to each other by the Galilei symmetries, consisting of (space

and time) translations, boost transformations and (D−1)-dimensional spatial rotations. Like in
general relativity, an observer in a free-falling frame does not experience any gravitational

force. All free-falling frames are connected to each other by the Galilei symmetries. For

practical purposes, it is convenient to consider not only free-falling frames but to include

all frames corresponding to a so-called Galilean observer [1, 2]. These are all frames that

are accelerated, with arbitrary (time-dependent) acceleration, with respect to a free-falling

frame. An example of a frame describing a Galilean observer with constant acceleration

[3] is the one attached to the Earth’s surface, thereby ignoring the rotation of the Earth.

Newton showed that in the constant-acceleration frames the gravitational force is described

by a time-independent scalar potential 8(xi) (i = 1, . . . , D − 1), the so-called Newton

potential. In frames with time-dependent acceleration, the potential becomes an arbitrary

function8(x) of the spacetime coordinates. A noteworthy difference between general relativity

and Newtonian gravity is that while in general relativity any observer can locally in spacetime

use a general coordinate transformation to make the metric flat, in Newtonian gravity only

the Galilean observers can use an acceleration to make the Newton potential disappear.

The Newton potential deforms the free motion of a particle and is itself described by a

Poisson equation with the mass density ρ(x) as a source term, and it takes over the role played

by the metric function in general relativity. In the Newtonian limit, the Newton potential

is contained in the time–time component of gµν (x), and the potential term in the geodesic

equation is given by the spacetime–time component of the Christoffel symbol.

The equations of motion corresponding to a Galilean observer are invariant under the

so-called acceleration-extended Galilei symmetries. This corresponds to an extension of

the Galilei symmetries in which the (constant) space translations and boost transformations

have been gauged resulting into a theory which is invariant under arbitrary time-dependent

spatial translations4. The gravitational potential can be viewed as the ‘background gauge

field’ necessary to realize these time-dependent translations. Starting from a free particle in

a Newtonian spacetime, there are now two ways to derive the equations of motion for a

Galilean observer from a gauging principle. If one is only interested in the physics observed

by a Galilean observer, it is sufficient to gauge the constant space translations by promoting

4 The group of acceleration-extended Galilei symmetries is also called the Milne group [4].

2



Class. Quantum Grav. 29 (2012) 235020 R Andringa et al

the corresponding (constant) parameters to arbitrary functions of time. This automatically

includes the gauging of the boost transformations. The equation of motion of a particle is

then obtained by deforming the free equation of motion with the background gravitational

potential 8(x) such that the resulting equation is invariant under the acceleration-extended

Galilei symmetries. The Poisson equation of 8(x) can be obtained by realizing that it is the

only equation, of second order in the spatial derivatives, that is invariant under the acceleration-

extended Galilei symmetries.

In case one is interested in not only the physics as experienced by a Galilean observer

but also by other observers, corresponding to, e.g., rotating frames, it is convenient to first

gauge all symmetries of the Newtonian theory. One thus ends up with a gravitational theory

invariant under much more symmetries than the acceleration-extended Galilean symmetries.

This procedure was described in [2], and somewhat differently in [5]. The gauging contains an

additional subtletywith respect to the relativistic case. In the relativistic case, both the equations

of motion and the Lagrangian leading to the equations of motion are invariant under the

Poincaré symmetries. This is different from the Newtonian case. It turns out that although the

equations of motion are invariant under the Galilei symmetries, the corresponding Lagrangian

is only invariant under boosts up to a total time derivative. This leads to a central extension of

the Galilei algebra, containing an extra so-called central charge generator Z, which is called the

Bargmann algebra [6].5 The gauging procedure, in order to be well defined, must be applied

to the Bargmann algebra. Once one decides to restrict to a Galilean observer, with flat spatial

directions, one must impose as a kinematical constraint that the curvature with respect to the

spatial rotations vanishes. It should be stressed that one is not forced to impose this curvature

constraint, and one could stay more general and try to solve the resulting theory of gravity

for a curved transverse space. But if one does restrict to a flat transverse space and a Galilean

observer, the gauging procedure as described in [5] leads to a geometrical reformulation of

non-relativistic gravity called Newton–Cartan gravity [8]. In this reformulation, the trajectory

of a particle is described by a geodesic in a curved so-called Newton–Cartan spacetime. Such

a spacetime is described by a (non-invertible) temporal metric τµν and a spatial metric hµν ,

which both are covariantly constant. Through projective relations, one can also define the

‘inverses’ τµν and hµν of these metrics. The equations of motion are defined in terms of the

(singular) metric and Christoffel symbols of the Newton–Cartan spacetime. A noteworthy

feature is that metric compatibility does not define the Christoffel symbols uniquely in terms

of (derivatives of) the temporal and spatial metrics. To make contact with a Galilean observer,

one imposes a set of gauge-fixing conditions which restrict the symmetries to the acceleration-

extended Galilei ones. The expected equations of motion in terms of a gravitational potential

8(x) then follow. The (derivative of the) gravitational potential emerges as the spacetime–time

component of the Christoffel symbol.

It is natural to extend the above ideas fromparticles to strings. Thiswill give us information

about the gravitational forces as experienced by a non-relativistic string instead of a particle.

Although the symmetries involved are different, the ideas are the same as in the particle

case discussed above. The starting point in this case is a string moving in a flat Minkowski

background. Taking the non-relativistic limit leads to the action for a non-relativistic string

[9–11] that is invariant under a ‘stringy’ version of the Galilei symmetries. The transformations

involved, which will be specified later, are similar to the particle case except that now not only

time but also the spatial direction along the string plays a special role. This leads to an M1,1

foliation of spacetime. Again, the Lagrangian is only invariant up to a total derivative (in the

5 Alternatively, onemay construct an invariant Lagrangian at the expense of introducing an additional coordinate. One

thus ends up with a higher dimensional realization of the Bargmann algebra in which the central charge transformation

corresponds to a translation in the extra direction [7].
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world-sheet coordinates), and hence, we obtain an extension of the ‘stringy’ Galilei algebra

which involves two additional generators Za and Zab = −Zba (a = 0, 1).6 Due to the extra

index structure, these generators provide general extensions rather than central extensions of

the stringy Galilei algebra [12].

Any two free-falling frames are connected by a stringy Galilei transformation. A ‘stringy’

Galilean observer is now defined as an observer with respect to any frame that is accelerated,

with arbitrary (time- and longitudinal-coordinate-dependent) acceleration, with respect to

a free-falling frame. The corresponding acceleration-extended ‘stringy’ Galilei symmetries

are obtained by gauging the translations in the spatial directions transverse to the string by

promoting the corresponding parameters to arbitrary functions of the world-sheet coordinates.

These transformations involve the constant transverse translations and the stringy boost

transformations, which are linear in the world-sheet coordinates.

Again, there are twoways to obtain the equations ofmotion for a stringyGalilean observer.

The first way is to start from the string in a Minkowski background and gauge the transverse

translations. In the string case, this requires the introduction of a background gravitational

potential 8αβ (x) = 8βα(x) (α = 0, 1), as was also pointed out in [13]. This is a striking

difference with general relativity where, independent of whether particles or strings are the

basic objects, one always ends up with the same metric function gµν (x). This is related to

the fact that in the non-relativistic case spacetime is a foliation and that the dimension of the

foliation space depends on the nature of the basic object (particles or strings). Alternatively, one

gauges the full deformed stringy Galilei algebra and imposes a set of kinematical constraints,

like in the particle case. The equation of motion for 8αβ (x) can be obtained by requiring that

it is of second order in the transverse spatial derivatives and invariant under the acceleration-

extended stringy Galilei transformations. In the string case, one requires that both the curvature

of spatial rotations transverse to the string and the curvature of rotations among the foliation

directions vanishes. This leads to a flat foliation corresponding to anM1,1 foliation of spacetime

as well as to flat transverse directions. One next introduces the equations of motion making use

of the (non-invertible) temporal and spatial metrics and Christoffel symbols corresponding to

the stringy Newton–Cartan spacetime. To make contact with a stringy Galilean observer, one

imposes gauge-fixing conditions which reduce the symmetries to the acceleration-extended

stringy Galilei ones. As expected, the two approaches lead to precisely the same expression for

the equation of motion of a fundamental string and of the gravitational potential8αβ (x) itself.

The (derivative of the) latter emerges as a transverse–longitudinal–longitudinal component of

the Christoffel symbol.

In order to study applications of the AdS/CFT correspondence based on the symmetry

algebra corresponding to a non-relativistic string, it is necessary to include a (negative)

cosmological constant 3. It is instructive to first discuss the particle case. In the relativistic

case, this means that the Poincaré algebra gets replaced by an anti-de Sitter (AdS) algebra

corresponding to a particle moving in an AdS background. It is well known that one cannot

obtain general relativity with a (negative) cosmological constant by gauging the AdS algebra

in the same way that one can obtain general relativity by gauging the Poincaré algebra. The

(technical) reason for this is that one cannot find a set of (so-called conventional) curvature

constraints whose effect is to convert the translation transformations into general coordinate

transformations and, at the same time, to make certain gauge fields to be dependent on others;

see, e.g., [14]. However, we are lucky. It turns out that when taking the non-relativistic limit

of a particle moving in an AdS background, which is a 3-deformation of the Minkowski

background, one ends up with a non-relativistic particle action which is a particular case of

6 Our notation and conventions can be found in appendix A.
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the non-relativistic particle action for a Galilean observer with zero cosmological constant but

with the following nonzero value of the gravitational potential:

8(xi) = − 1
2
3xix jδi j, (1.1)

where {xi} are the transverse coordinates. The action is invariant under the so-called Newton–
Hooke symmetries which are a3-deformation of the Galilei symmetries. All Newton–Hooke

symmetries can be viewed as particular time-dependent transverse translations. Therefore,

when gauging the transverse translations, it does not matter whether one gauges the Galilei

or Newton–Hooke symmetries, in both cases one ends up with the same theory but with a

different interpretation of the potential. When gauging the Galilei symmetries, one interprets

the potential 8(x) as a purely gravitational potential φ(x), i.e. 8(x) = φ(x). On the other

hand, when gauging the Newton–Hooke symmetries, one writes 8(x) as the sum of a purely

gravitational potential φ(x) and a 3-dependent part:

8(x) = φ(x) − 1
2
3xix jδi j. (1.2)

In both cases, turning off gravity amounts to setting φ(x) = 0. For 3 = 0, this implies

8(x) = 0 but for 3 6= 0 this implies 8(xi) = 1
2
3xix jδi j. These different conditions lead

to different surviving symmetries: (centrally extended) Galilei symmetries for 3 = 0 versus

(centrally extended) Newton–Hooke symmetries [15, 16] for 3 6= 0.

It is now a relatively straightforward task to generalize the above discussion to a string

moving in an AdS background. Taking the non-relativistic limit of a string moving in such a

background leads to a non-relativistic action that is invariant under a stringy version of the

Newton–Hooke symmetries [17, 18]. Note that this action is3-deformed in two ways: (i) there

is a 3-dependent potential term in the action like in the particle case and (ii) the foliation

metric is deformed fromM1,1 (3 = 0) to AdS2 (3 6= 0). The latter deformation, which leads

to an AdS2 foliation of spacetime, is trivial in the particle case. All stringy Newton–Hooke

symmetries can be viewed as particular world-sheet-dependent transverse translations. It is

therefore sufficient to gauge the symmetries for the case 3 = 0 only, which amounts to

gauging the stringy Galilei symmetries. In the second stage, one obtains the 3 6= 0 case by a

different interpretation of the potential 8αβ (x) and by replacing the flat foliation space by an

AdS2 spacetime. To be concrete, in analogy to the particle case, we gauge the stringy Galilei

symmetries only and, next, write the background potential 8αβ (x), which is needed for this

gauging, as

8αβ (x) = φαβ (x) + 1
4
3 xix j δi jταβ, (1.3)

where φαβ (x) is the purely gravitational potential and ταβ is an AdS2 metric. At the same

time, we have replaced the flat foliation by an AdS2 space leading to an AdS2 foliation of

spacetime7.

In this way, it is a relatively simple manner to obtain the geodesic equations of motion

for a fundamental string in a cosmological background and to derive the equations of motion

for the potential 8αβ (x) itself. We will give the explicit expressions in the second part of this

paper.

This work is organized as follows. In section 2, we review, as a warming-up exercise,

the particle case for zero cosmological constant. The gauging of the Bargmann algebra, i.e.

the centrally extended Galilei algebra, will only be discussed at the level of the symmetries;

for full details, we refer to [5]. In section 3, we derive the relevant expressions for the string

7 When gauging the full (deformed) stringy Galilei symmetries, one of the kinematical constraints which have to be

imposed in order to restrict to a stringy Galilean observer, for 3 6= 0, is that the curvature corresponding to rotations

among the longitudinal directions is proportional to 3. This leads to a flat foliation for 3 = 0 but an AdS2 foliation

for 3 6= 0.
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case. In particular, we discuss the gauging of the full (deformed) stringy Galilei symmetries.

The extension to a nonzero cosmological constant will be discussed in section 4 using the

observations mentioned above. In this section, we will present explicit expressions for the

equation of motion for a non-relativistic fundamental string in a cosmological background and

the equations of motion for the potential 8αβ (x). These two equations together describe the

dynamics of ‘stringy’ Newton–Cartan gravity as observed by a ‘stringy’ Galilean observer.

The potential application of this theory to the AdS/CFT correspondence based on the non-

relativistic Newton–Hooke algebra will be briefly discussed in section 5.

2. The particle case

Our starting point is the action describing a particle of mass m moving in a D-dimensional

Minkowski spacetime, i.e. 3 = 0, with the metric ηµν (µ = 0, 1, . . . , D − 1):

S = −m

∫

dτ
√

−ηµν ẋµẋν . (2.1)

Here, τ is the evolution parameter parametrizing the worldline and the dot indicates

differentiation with respect to τ . We have taken the speed of light to be c = 1. This action

is invariant under worldline reparametrizations. The Lagrangian, defined by S =
∫

L dτ , is

invariant under the Poincaré transformations with parameters λµ
ν (Lorentz transformations)

and ζµ (translations):

δxµ = λµ
νxν + ζµ. (2.2)

Following [11, 17], we take the non-relativistic limit by rescaling the longitudinal coordinate

x0 ≡ t and the mass m with a parameter ω and taking ω À 1:

x0 → ωx0, m → ωm, ω À 1. (2.3)

This rescaling is such that the kinetic term remains finite. This results into the following action:

S ≈ −mω2
∫

ẋ0
(

1−
ẋiẋi

2ω2(ẋ0)2

)

dτ, i = 1, . . . , D − 1. (2.4)

The first term on the right-hand side, which is a total derivative, can be canceled by coupling

the particle to a constant background gauge field Aµ by adding a term

SI = m

∫

Aµẋµdτ, (2.5)

and choosing A0 = ω2 and Ai = 0 [9]. The effect of this cancelation is that only states charged

under the gauge field have finite energy [9]. Because this Aµ can be written as a total derivative,

the associated field-strength vanishes, such that no dynamics for the background gauge field

is introduced. The limit ω → ∞ then yields the following non-relativistic action:

S =
m

2

∫

ẋiẋ jδi j

ẋ0
dτ. (2.6)

This action is invariant under worldline reparametrizations and the following Galilei

symmetries:

δx0 = ζ 0, δxi = λi
jx

j + vix0 + ζ i, (2.7)

6
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where
(

ζ 0, ζ i, λi
j, v

i
)

parametrize a (constant) time translation, space translation, spatial

rotation and boost transformation, respectively. The equations of motion corresponding to the

action (2.6) are8

ẍi =
ẍ0

ẋ0
ẋi. (2.8)

It turns out that the non-relativistic Lagrangian (2.6) is invariant under boosts only up to a total

τ -derivative:

δL =
d

dτ
(mxiv jδi j). (2.9)

This leads to a modified Noether charge giving rise to a centrally extended Galilei algebra

containing an extra so-called central charge generator Z; see, e.g., [19, 20]. This centrally

extended Galilei algebra is called the Bargmann algebra [6].

The above results apply to free-falling frames without any gravitational interactions. Such

frames are connected to each other via the Galilei symmetries (2.7). We now wish to extend

these results to include frames that apply to a Galilean observer, i.e. that are accelerated with

respect to the free-falling frames, with arbitrary (time-dependent) acceleration. As explained in

section 1, we can do this via two distinct gauging procedures. The first procedure is convenient

if one is only interested in the physics experienced by a Galilean observer. In that case it

is sufficient to gauge the transverse translations by replacing the constant parameters ζ i by

arbitrary time-dependent functions ζ i → ξ i(x0). Applying this gauging to the action (2.6)

leads to the following gauged action containing the gravitational potential 8(x):9

S =
m

2

∫

dτ

(

ẋiẋ jδi j

ẋ0
− 2ẋ08(x)

)

. (2.10)

The action (2.10) is invariant underworldline reparametrizations and the acceleration-extended

symmetries (we write x0 as t from now on),

δt = ζ 0, δxi = λi
jx

j + ξ i(t), (2.11)

provided that the ‘background gauge field’ 8(x) transforms as follows:

δ8(x) = −
1

ṫ

d

dτ

(

ξ̇i

ṫ

)

xi + ∂0g(t). (2.12)

The second term with the arbitrary function g(t) represents a standard ambiguity in any

potential describing a force and gives a boundary term in the action (2.10). This action leads

to the following modified equation of motion describing a particle moving in a gravitational

potential:

ẍi + (ṫ)2δi j∂ j8(x) =
ẗ

ṫ
ẋi. (2.13)

Notice how (2.12) and (2.13) simplify if one takes the static gauge

t = τ, (2.14)

for which ṫ = 1 and ẗ = 0. Using this static gauge, we see that for constant accelerations

ξ̈ i = constant, it is sufficient to introduce a time-independent potential 8(xi) but that for

8 One can check that the equation of motion for {x0} and {xi} corresponding to the action (2.6) are not independent; the
first can be derived from the latter. When we will include gravity in (2.6) via the worldline-reparametrization-invariant

coupling ẋ08(x), see equation (2.10), this will again be the case.
9 Note that 8(x) is a background field representing a set of coupling constants from the worldline point of view.

Since these coupling constants also transform, we are dealing not with a ‘proper’ symmetry but with a ‘pseudo’ or

‘sigma-model’ symmetry; see, e.g., [21, 22].

7
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time-dependent accelerations we need a potential 8(x) that depends on both the time and the

transverse spatial directions.

The equation of motion of 8(x) itself is easily obtained by requiring that it is of second

order in spatial derivatives and invariant under the acceleration-extended Galilei symmetries

(2.11) and (2.12). Since the variation of 8(x), see equation (2.12), contains an arbitrary

function of time and is linear in the transverse coordinate, it is clear that the unique second-

order differential operator satisfying this requirement is the Laplacian 1 ≡ δi j∂i∂ j. Requiring

that the source term is provided by the mass density function ρ(x), which transforms as a

scalar with respect to (2.11), this leads to the following Poisson equation:

48(x) = VD−2Gρ(x), (2.15)

where we have introduced Newton’s constant G for dimensional reasons, and VD−2 is the

volume of a (D − 2)-dimensional sphere.
The second gauging procedure is relevant if one is interested in describing the physics in

more frames than the set of accelerated ones. In that case one needs to gauge all the symmetries

of the Bargmann algebra. This gauging has been described in [5]. We will not repeat the full

procedure here but explain the basic points and concentrate on the symmetries involved. The

starting point is the Bargmann algebra which consists of time and space translations, spatial

rotations, boosts and central charge transformations. In the gauging procedure, one associates

a gauge field with each of the symmetries (for our index notation, see appendix A):

τµ : time translations,

eµ
a′

: space translations,

ωµ
a′0 : boosts,

ωµ
a′b′

: spatial rotations,

mµ : central charge transformations.

(2.16)

Furthermore, the constant parameters describing the transformations are promoted to arbitrary

functions of the spacetime coordinates {xµ}:
τ (xµ) : time translations,

ζ a′
(xµ) : space translations,

λa′0(xµ) : boosts,

λa′b′
(xµ) : spatial rotations,

σ (xµ) : central charge transformations.

(2.17)

Besides these transformations, all gauge fields transform under general coordinate

transformations with parameters ξµ(xµ) = (ξ 0(xµ), ξ i(xµ)). As a first step in the gauging

procedure, one imposes a set of so-called conventional constraints on the curvatures of the

gauge fields. The purpose of these constraints is twofold. First of all, it has the effect that the

time and space translations become equivalent to general coordinate transformations modulo

the other symmetries of the algebra [23]. This can be seen from the following identity, which

relates the general coordinate transformation of a gauge field Bµ
A to its curvature Rµλ

A and

the other gauge transformations in the theory with field-dependent parameters:

δgct (ξ
λ)Bµ

A + ξλRµλ
A −

∑

{C}

δ
(

ξλBλ
C
)

Bµ
A = 0. (2.18)

Second, the conventional constraints enable one to solve for the gauge fields ωµ
a′0 and ωµ

a′b′

in terms of the other ones [5]:

ωµ
a′b′ = 2eρ[a

′
∂[ρeµ]

b′] − eρa′
eνb′

eµ
c′
∂[νeρ]

c′ − τµe
ρ[a′

ωρ
b′]0, (2.19)

ωµ
a′0 = eνa′

∂[µmν] + eνa′
τ ρeµ

b′
∂[νeρ]

b′ + τµτ νeρa′
∂[νmρ] + τ ν∂[µeν]

a′
. (2.20)

8
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The same constraints have a third effect, namely that the gauge field τµ of time translations

can be written as the spacetime derivative of an arbitrary function f (x):

τµ = ∂µ f (x). (2.21)

At this point, the symmetries of the theory are the general coordinate transformations plus the

boosts, spatial rotations and central charge transformations, all with parameters that are the

arbitrary functions of the spacetime coordinates.

The gauge fields τµ and eµ
a′
of time and spatial translations are identified as the (singular)

temporal and spatial vielbeins. One may also introduce their inverses (with respect to the

temporal and spatial subspaces) τµ and eµa′ :

eµ
a′
eµb′ = δa′

b′ , eµ
a′
eνa′ = δν

µ − τµτ ν, τµτµ = 1,

τµeµ
a′ = 0, τµe

µ
a′ = 0. (2.22)

The spatial and temporal vielbeins define spatial and temporal metrics as follows:

τµν = τµτν, τµν = τµτ ν,

hµν = eµ
a′

eν
b′

δa′b′ , hµν = eµa′eνb′ δa′b′
. (2.23)

A 0-connection can be introduced by assuming the vielbein postulates:

∂µeν
a′ − ωµ

a′b′
eν

b′ − ωµ
a′0τν − 0ρ

νµeρ
a′ = 0, ∂µτν − 0λ

νµτλ = 0. (2.24)

These vielbein postulates state that τµ is covariantly constant, whereas eµ
a′
is not10, and can

be uniquely solved for the 0-connection, giving

0ρ
νµ = τ ρ∂(µτν) + eρa′

(

∂(µeν)
a′ − ω(µ

a′b′
eν)

b′ − ω(µ
a′0τν)

)

, (2.25)

where the dependent fields ωµ
a′b′
and ωµ

a′0 are given by (2.19) and (2.20). If we plug in these

explicit solutions, one obtains

0ρ
νµ = τ ρ∂(µτν) + 1

2
hρσ (∂νhσµ + ∂µhσν − ∂σ hµν ) + hρσ Kσ (µτν),

Kµν = 2∂[µmν]. (2.26)

The Riemann tensor can be obtained, using the vielbein postulates, from the curvatures of the

spin connection fields:

Rµ
νρσ (0) = −eµa′Rρσ

a′b′
(M′′)eνb′ − eµa′Rρσ

a′0(M′)τν . (2.27)

At this stage, the independent gauge fields are given by {τµ, eµ
a′
, mµ}. The dynamics of the

Newton–Cartan point particle is now described by the following action [1]:

L =
m

2

(

hµν ẋµẋν

τρ ẋρ
− 2mµẋµ

)

. (2.28)

Alternatively, this action can be written as

L =
m

2
N−1ẋµẋν (hµν − 2mµτν ) (2.29)

with N ≡ τµẋµ.

The first term in this Lagrangian can be seen as the covariantization of the Lagrangian

of (2.6) with the Newton–Cartan metrics hµν and τµ. The presence of the central charge

gauge field mµ represents the ambiguity when trying to solve the 0-connection in terms of

the (singular) metrics of Newton–Cartan spacetime. The Lagrangian (2.28) is quasi-invariant

under the gauged Bargmann algebra; under Z-transformations δmµ = ∂µσ , the Lagrangian

(2.28) transforms as a total derivative, while for the other transformations, the Lagrangian is

10 Remember that ∇ρhµν = 0 and ∇ρhµν 6= 0.

9
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invariant. In fact, the mµẋµ term in (2.28) is needed in order to render the action invariant

under boost transformations which transform both the spatial metric hµν and the central charge

gauge field mµ as follows:

δhµν = 2λa′
0e(µ

a′
τν), δmµ = λa′

0eµ
a′
. (2.30)

Varying the Lagrangian (2.28) gives, after a lengthy calculation11, the geodesic equation

ẍµ + 0µ
νρ ẋν ẋρ =

Ṅ

N
ẋµ. (2.31)

Here, N ≡ τµẋµ = ḟ , which in adapted coordinates becomes N = ṫ, and the 0-connection

is given by (2.25). The geodesic equation (2.31) can be regarded as the covariantization of

(2.13).

Unlike the particle dynamics, the gravitational dynamics cannot be obtained from an

action in a straightforward way; see, e.g., [7]. The equation describing the dynamics of

Newton–Cartan spacetime may be written in terms of the Ricci tensor of the 0-connection as

follows:

Rµν (0) = VD−2Gρτµν . (2.32)

To make contact with the equations for a Galilean observer, derived in the first gauging

procedure, one must impose the kinematical constraint that the curvature corresponding to the

(D − 1)-dimensional spatial rotations equals zero:

Rµν
a′b′

(M′′) = 0. (2.33)

Here, M′′ refers to the generators of spatial rotations. It should be stressed that one is not

forced to impose this curvature constraint, and one could stay more general and try to solve

the resulting theory of gravity for a curved transverse space. We will see that the constraint

(2.33) can be considered as an ansatz for the transverse Newton–Cartan metric hµν to be flat.

It is also convenient to choose the so-called adapted coordinates in which the function f (x)

in equation (2.21) is set equal to the time or foliation coordinate t : f (x) = t. This reduces the

general coordinate transformations to constant time translations and spatial translations with

an arbitrary spacetime-dependent parameter.

The kinematical constraint (2.33) enables us to do two things. First, we can now choose

a flat Cartesian coordinate system in the (D − 1) spatial dimensions, because the transverse
space is flat as can be seen from equation (2.27):12

Ri
jkl (0) = 0. (2.34)

The solution (2.19) implies that the spatial components ωi
a′b′
of the gauge field of spatial

rotations is zero in such a coordinate system, which expresses the fact that the transverse

Christoffel symbols vanish:

0i
jk ∼ δi

a′δ
j

b′ωk
a′b′ = 0. (2.35)

This choice of coordinates restricts the spatial rotations to those that have a time-dependent

parameter only. Second, due to the same kinematical constraint (2.33), the time component

ω0
a′b′
of the same gauge field is a pure gauge; Rµν

a′b′
(M′′) is the field strength of an SO(D−1)

gauge theory and contains only ωµ
a′b′
, as can be seen from (B.6). As such, the constraint

11 Some details are given in appendix C.
12 Note that equation (2.34) already follows from the equations of motion (2.32) in the case of D = 4, because in

three dimensions a vanishing Ricci tensor implies a vanishing Riemann tensor.

10
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(2.33) allows one to gauge fix ωµ
a′b′
to zero13, and this restricts the spatial rotations to having

constant parameters only. Through (2.25), one can show that this implies

0i
0 j ∼ δi

a′δ
j

b′ω0
a′b′ = 0. (2.36)

The same choice of a Cartesian coordinate system also restricts the spatial translations to

having only time-dependent parameters. This reduces the symmetries acting on the spacetime

coordinates to the acceleration-extended Galilei symmetries given in equation (2.11).

The central charge transformations now only depend on time and do not act on the spacetime

coordinates. The vielbein postulate tells us that the only remaining connection component 0i
00

can be written as 0i
00 = ∂ i8(x), where

8(x) = m0(x) − 1
2
δi jτ

i(x)τ j(x) + ∂0m(x). (2.37)

Here, m0 and ∂im are the time component and spatial gradient components of the extension

gauge fieldmµ, and τ i are the space components of the inverse temporal vielbein τµ. Using the

transformation properties of 0i
00, one can show that 8(x), defined by equation (2.37), indeed

transforms like in equation (2.12) under the acceleration-extended Galilei symmetries14.

One can show that after gauge fixing the Newton–Cartan symmetries to the acceleration-

extended Galilei symmetries, as described above, the Lagrangian (2.28) reduces to

L =
m

2

(

δi j ẋ
iẋ j

ẋ0
+ ẋ0(δi jτ

iτ j − 2m0 − 2∂0m)

)

, (2.38)

where a boundary term has been discarded15. Upon comparison with the action (2.10), this

again identifies the potential as in (2.37). Note that the τ iẋi terms cancel, reflecting the choice

of gauge (2.36) and indicating that this particular reference frame is non-rotating. Similarly,

equation (2.32) reduces in this gauge to the Poisson equation (2.15).

As expected, having the same symmetries, the equations of motion (2.31) and (2.32)

reduce to precisely the equations of motion (2.13) and (2.15), we obtained in the first gauging

procedure.

3. From particles to strings

We now consider instead of particles of mass m strings with tension T moving in a

D-dimensional Minkowski spacetime, with metric ηµν (µ = 0, 1, . . . , D − 1). The action

describing the dynamics of such a string is given by the Nambu–Goto action (we take c = 1)16

S = −T

∫

d2σ
√

−γ , (3.1)

where σ ᾱ (ᾱ = 0, 1) are the world-sheet coordinates and γ is the determinant of the induced

world-sheet metric γᾱβ̄ :

γᾱβ̄ = ∂ᾱxµ∂β̄xνηµν . (3.2)

13 Explicitly, one can write Rµν
a′b′

(M′′) = 2D[µων]
a′b′

and δωµ
a′b′ = Dµλa′b′

, where Dµ is the gauge covariant

derivative. Putting Rµν
a′b′

(M′′) = 0 imposes the constraint ωµ
a′b′ = Dµ f a′b′

on the gauge field for some f a′b′
.

Performing then a gauge transformation on ωµ
a′b′
and choosing the gauge parameter to be λa′b′ = − f a′b′

, the result

follows.
14 The fact that 8 transforms with the double time derivative of ξ i shows that it indeed transforms as a component of

the 0-connection.
15We have made use of the fact that, because xµ = xµ(τ ), the τ -derivative of a general function f (x) can be written

as ḟ (x) = ẋ0∂0 f (x) + ẋi∂i f (x), which in the static gauge becomes ḟ (x) = ∂0 f (x) + ẋi∂i f (x).
16 Alternatively, one can consider the Polyakov action. This case has been considered in [17].

11



Class. Quantum Grav. 29 (2012) 235020 R Andringa et al

The action (3.1) is invariant under world-sheet reparametrizations. Like in the particle case,

the Lagrangian corresponding to this action is invariant under Poincaré transformations in the

target spacetime; see equation (2.2).

Following [11, 17], we take the non-relativistic limit by rescaling the longitudinal

coordinate xα = (x0 ≡ t, x1) with a parameter ω and taking ω À 1:17

xα → ωxα, ω À 1. (3.3)

This results into the following action (i = 2, . . . , D − 1):

S ≈ −Tω2
∫

d2σ
√

−γ̄

(

1+
1

2ω2
γ̄ ᾱβ̄∂ᾱxi∂β̄x jδi j

)

, (3.4)

where γ̄ᾱβ̄ is the pull-back of the longitudinal metric ηαβ :

γ̄ᾱβ̄ = ∂ᾱxα∂β̄xβηαβ . (3.5)

Unlike the world-sheet metric (3.2), the pull-back used in (3.5) is given by a 2× 2 matrix, and
as such is invertible. This means that the inverse metric γ̄ ᾱβ̄ can be explicitly given: it is the

pull-back of the longitudinal inverse metric ηαβ ,

γ̄ ᾱβ̄ = ∂ασ ᾱ∂βσ β̄ηαβ, (3.6)

such that γ̄ ᾱβ̄ γ̄β̄ε̄ = δᾱ
ε̄ .

The divergent term on the right-hand side of equation (3.4) is a total world-sheet derivative

[11]. This can be seen by using the identity η[β[αηγ ]δ] = − 1
2
εβδεαγ , which holds in two

dimensions and in which εαγ is the two-dimensional epsilon symbol. This allows one to write
√

−γ̄ = ∂ᾱ

(

1
2
εᾱγ̄ εαγ xα∂γ̄ xγ

)

. (3.7)

The divergent term can be canceled by coupling the string to a constant background 2-form

potential Bµν through the following Wess–Zumino term:

SI = T

∫

d2σεᾱβ̄∂ᾱxµ∂β̄xνBµν, (3.8)

and choosing the constant field components Bµν such that

Bαβ = 1
2
ω2εαβ, Biα = Bi j = 0. (3.9)

The resulting field strength of Bµν is zero, similar to the particle case. The limit ω → ∞ of

the sum of (3.4) and (3.8) then leads to the following non-relativistic action:

S = −
T

2

∫

d2σ
√

−γ̄
(

γ̄ ᾱβ̄∂ᾱxi∂β̄x jδi j

)

. (3.10)

This action is invariant underworld-sheet reparametrizations and the following ‘stringy’Galilei

symmetries:

δxα = λα
βxβ + ζ α, δxi = λi

jx
j + λi

βxβ + ζ i, (3.11)

where (ζ α, ζ i, λi
j, λ

i
α, λα

β ) parametrize a (constant) longitudinal translation, transverse

translation, transverse rotation, ‘stringy’ boost transformation and longitudinal rotation,

respectively. As for the point particle, the equations of motion for the longitudinal and

transverse components are not independent. The equations of motion for {xi} corresponding
to the action (3.10) are given by

∂ᾱ(
√

−γ̄ γ̄ ᾱβ̄∂β̄xi) = 0. (3.12)

17 Note that, unlike the particle case, the parameter T does not get rescaled.
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The non-relativistic Lagrangian defined by (3.10) is invariant under a stringy boost

transformation only up to a total world-sheet divergence:

δL = ∂ᾱ

(

−T
√

−γ̄
∂σ ᾱ

∂xα
λi

αxi

)

, (3.13)

where (3.6) has been used. This leads to a modified Noether charge giving rise to an extension

of the stringy Galilei algebra containing two extra generators: Za and Zab (a = (0, 1)) [12].

The corresponding extended stringy Galilei algebra is given in appendix B.

We now wish to connect to the physics as experienced by a ‘stringy’ Galilean observer

by gauging the translations in the spatial directions transverse to the string. In this procedure,

we replace the constant parameters ζ i by functions ξ i(xα ) depending only on the longitudinal

coordinates. Applying this gauging to the non-relativistic action (3.10) leads to the following

gauged action containing a gravitational potential 8αβ :

S = −
T

2

∫

d2σ
√

−γ̄ (γ̄ ᾱβ̄∂ᾱxi∂β̄x jδi j − 2ηαβ8αβ ). (3.14)

This action can be compared with the point particle action (2.10).18 The string action (3.14) is

invariant under world-sheet reparametrizations and the acceleration-extended stringy Galilei

symmetries [12]:

δxα = λα
βxβ + ζ α, δxi = λi

jx
j + ξ i(xα ). (3.15)

The local transverse translations are only realized provided that the background potentials

8αβ transform as follows:

δ8αβ = −
1

2
√

−γ̄
ηαβ∂ᾱ(

√

−γ̄ γ̄ ᾱβ̄∂β̄ξi)x
i + ∇(αgβ)(x

ε ), (3.16)

for arbitrary gβ (xε ). Equation (3.16) is the string analogue of equation (2.12). The action

(3.14) leads to the following modified equations of motion for the transverse coordinates {xi}:
∂ᾱ(

√

−γ̄ γ̄ ᾱβ̄∂β̄xi) +
√

−γ̄ ηαβ∂ i8αβ = 0. (3.17)

These equations of motion simplify if we choose the static gauge

xα = σ ᾱ. (3.18)

In this gauge, we have that γ̄ᾱβ̄ = ηαβ .

The equation of motion of 8αβ (x) itself is easily obtained by requiring that it is of

second order in spatial derivatives and invariant under the acceleration-extended stringyGalilei

symmetries (3.15) and (3.16). Since the variation of 8αβ (x), see equation (3.16), contains an

arbitrary function of the longitudinal coordinates and is linear in the transverse coordinates,

it follows that the unique second-order differential operator satisfying the above requirement

is the Laplacian 1 ≡ δi j∂i∂ j. Requiring that the source term is provided by the mass density

function ρ(x), which transforms as a scalar with respect to (3.15), this leads to the following

Poisson equation:

48αβ (x) = VD−2Gρ(x)ηαβ . (3.19)

This finishes our first approach where we only gauge the transverse translations. In this

approach, we have presented both the equations of motion for the transverse coordinates {xi}
of a string, see equation (3.17), as well as the bulk equations of motion for the gravitational

potential 8αβ ; see equation (3.19).

We now proceed with the second gauging procedure in which we gauge the full

deformed stringy Galilei algebra. This algebra consists of longitudinal translations, transverse

18 Note that γ̄ᾱβ̄ corresponds to a factor −(ẋ0)2 in the particle action.
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translations, longitudinal Lorentz transformations, ‘boost’ transformations, transverse

rotations and two distinct extension transformations. The explicit commutation relations of

the generators corresponding to these symmetries are given in appendix B. As a first step one

associates a gauge field with each of these symmetries:

τµ
a : longitudinal translations,

eµ
a′

: transverse translations,

ωµ
ab : longitudinal Lorentz transformations,

ωµ
a′a : ‘boost’ transformation,

ωµ
a′b′

: transverse rotations,

mµ
a, mµ

ab : extension transformations.

(3.20)

At the same time, the constant parameters describing the transformations are promoted to

arbitrary functions of the spacetime coordinates {xµ}:
τ a(xµ) : longitudinal translations,

ζ a′
(xµ) : transverse translations,

λab(xµ) : longitudinal Lorentz transformations,

λa′a(xµ) : ‘boost’ transformations,

λa′b′
(xµ) : transverse rotations,

σ a(xµ), σ ab(xµ) : extension transformations.

(3.21)

The explicit gauge transformations of the gauge fields, together with the expressions for

the gauge-invariant curvatures and the Bianchi identities that they satisfy, can be found in

appendix B. Besides the gauge transformations all gauge fields transform under general

coordinate transformations with parameters ξµ(xµ) = (ξα(xµ), ξ i(xµ)).

Like in the particle case, we would like to express the 0-connection in terms of the

previous gauge fields. In order to do that we first impose a set of so-called conventional

constraints on the curvatures of the gauge fields:

Rµν
a(H) = Rµν

a′
(P) = Rµν

a(Z) = 0. (3.22)

These constraints are required to convert the local Ha and Pa′ transformations into general

coordinate transformations through the identity (2.18). Besides this, the constraints (3.22) also

imply that the gauge fields ωµ
a′b′

, ωµ
a′a and ωµ

ab become dependent:

ωµ
a′b′ = ∂[µeν]

a′
eνb′ − ∂[µeν]

b′
eνa′ + eµ

c′
∂[νeρ]

c′
eνa′

eρb′ − τµ
aeρ[a′

ωρ
b′]a, (3.23)

ωµ
a′a = 2τµ

b
(

τ νbeρa′
[∂[νmρ]

a − ω[ν
acmρ]

c]− eνa′
mν

ab
)

+2eµ
b′
τ ρaeν(b′

∂[νeρ]
a′) + eµ

b′
eνb′

eρa′
[∂[νmρ]

a − ω[ν
abmρ]

b], (3.24)

ωµ
ab = ∂[µτν]

aτ νb − ∂[µτν]
bτ νa + τ νaτ ρbτµ

c∂[ντρ]
c. (3.25)

The solution forωµ
ab is familiar from the Poincaré theory and reflects the fact that the foliation

space is given by a two-dimensional Minkowski spacetime. The same constraints have a third

effect, namely that they lead to constraints on the curl of the gauge field τµ
a. More precisely,

the conventional constraint Rµν
a(H) = 0 cannot only be used to solve for the spin connection

ωµ
ab, see equation (3.25). Substituting this solution back into the constraint also implies that

the following projections of ∂[µτν]
a vanish:

eµa′
τ ν(a∂[µτν]

b) = 0, eµa′eνb′∂[µτν]
a = 0. (3.26)

It is instructive to verify how the other two spin connections are solved for. First, the

conventional constraints Rµν
a′
(P) = 0 can not only be used to solve for the spin connection

14
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ωµ
a′b′
, see equation (3.23), but also for the following projections of the spin connection field

ωµ
a′a:

eµ(a′
ωµ

b′)b = 2τ νbeµ(a′
∂[µeν]

b′), ωρ
a′[aτ b]ρ = −τµaτ νb∂[µeν]

a′
. (3.27)

Making different contractions of the third conventional constraint Rµν
a(Z) = 0, one can solve

for two more projections of the same spin connection field:

τµbωµ
a′a = 2τµbeνa′(

∂[µmν]
a − ω[µ

acmν]
c
)

− 2eµa′
mµ

ab, (3.28)

eµ[a
′
ωµ

b′]a = eµa′
eνb′(

∂[µmν]
a − ω[µ

abmν]
b
)

. (3.29)

Combining the solutions (3.27), (3.28) and (3.29) for the different projections and using the

decomposition

ωµ
a′a = τµ

bτ νbων
a′a + eµ

b′
eν(b′

ων
a′)a + eµ

b′
eν[b

′
ων

a′]a, (3.30)

one can solve for the spin connection fieldωµ
a′a, see (3.24). Finally, it turns out that beyond the

contractions already considered, there is one more contraction of the conventional constraint

Rµν
a(Z) = 0. It leads to the following constraint on the gauge field mµ

ab:

τµ[cmµ
d]a = τµcτ νd

(

∂[µmν]
a − ω[µ

abmν]
b
)

. (3.31)

This constraint relates the longitudinal projection of D[µmν]
a to a certain projection of the

gauge fieldmµ
ab, but does not allow one to solvemµ

ab completely; the other projections remain

unspecified. We will return to the meaning of the constraint (3.31) after equation (3.45).

At this point, the symmetries of the theory are the general coordinate transformations,

the longitudinal Lorentz transformations, ‘boost’ transformations, transverse rotations and

extension transformations, all with parameters that are arbitrary functions of the spacetime

coordinates. The gauge fields τµ
a of longitudinal translations and eµ

a′
of transverse translations

are identified as the (singular) longitudinal and transverse vielbeins. One may also introduce

their inverses (with respect to the longitudinal and transverse subspaces) τµ
a and e

µ
a′ :

eµ
a′
eµb′ = δa′

b′ , eµ
a′
eνa′ = δν

µ − τµ
aτ ν

a, τµ
aτµ

b = δb
a,

τµ
aeµ

a′ = 0, τµ
aeµa′ = 0. (3.32)

The spatial and temporal vielbeins are related to the spatial metric hµν with ‘inverse’ hµν , and

the temporal metric τµν with ‘inverse’ τ
µν , as follows:

τµν = τµ
aτν

b ηab, τµν = τµ
aτ

ν
b ηab,

hµν = eµ
a′

eν
b′

δa′b′ , hµν = eµa′eνb′ δa′b′
. (3.33)

These tensors satisfy the Newton–Cartan metric conditions

hµνhνρ + τµντνρ = δµ
ρ , τµντµν = 2,

hµντνρ = hµντ
νρ = 0. (3.34)

We note that for the point particle one would have τµντµν = 1 instead of τµντµν = 2.

A 0-connection can be introduced by imposing the following vielbein postulates:

∂µeν
a′ − ωµ

a′b′
eν

b′ − ωµ
a′aτν

a − 0λ
νµeλ

a′ = 0,

∂µτν
a − ωµ

abτν
b − 0ρ

νµτρ
a = 0. (3.35)

These vielbein postulates allow one to solve for0 uniquely. The torsion0
ρ

[νµ] vanishes because

of the constraints R(P) = R(H) = 0, and with this the vielbein postulates give the solution

0ρ
νµ = τ ρ

a

(

∂(µτν)
a − ω(µ

abτν)
b
)

+ eρ
a′
(

∂(µeν)
a′ − ω(µ

a′b′
eν)

b′ − ω(µ
a′aτν)

a
)

(3.36)
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in terms of the dependent spin connections ωµ
a′b′

, ωµ
a′a and ωµ

ab. If one plugs in the explicit

solutions of these spin connections, one obtains

0ρ
µν = 1

2
τ ρσ (∂ντσµ + ∂µτσν − ∂σ τµν ) + 1

2
hρσ (∂νhσµ + ∂µhσν − ∂σ hµν ) + hρσ Kσ (µ

a τν)
a,

(3.37)

where Kµν
a = −Kνµ

a is given by the covariant curl of mµ
a:

Kµν
a = 2D[µmν]

a. (3.38)

An important observation is that mµ
ab does not appear in (3.37). The origin of this absence is

the fact that expression (3.36) is invariant under the shift transformations

ωµ
a′a → ωµ

a′a + τµ
bXa′

ab, (3.39)

where Xa′

ab = Xa′

[ab] is an arbitrary shift parameter. The field mµ
ab appears in the form

Xa′

ab = eλa′mλ
ab in the solution of ωµ

a′a, and as such mµ
ab will drop out of the connection

(3.36), and thus out of (3.37).

The Riemann tensor can be obtained, using the vielbein postulates, from the curvatures

of the spin connection fields:

Rµ
νρσ (0) = −τµ

aRρσ
ab(M)τν

b − eµ
a′Rρσ

a′b′
(M′′)eνb′ − eµ

a′Rρσ
a′a(M′)τνa. (3.40)

Note that this Riemann tensor has no dependence on the gauge field mµ
ab.

At this stage, the independent fields are given by {τµ
a, eµ

a′
, mµ

a}, whereas we saw that
mµ

ab was partially solved for through equation (3.31) and does not enter the dynamics19. The

dynamics of a Newton–Cartan string is now described by the following Lagrangian20:

L = −
T

2

√

−det(τ )τ ᾱβ̄∂ᾱxµ∂β̄xν
(

hµν − 2mµ
aτν

a
)

, (3.41)

where the induced world-sheet metric τᾱβ̄ is given by

τᾱβ̄ ≡ ∂ᾱxµ∂β̄xντµν . (3.42)

Equation (3.41) is the stringy generalization of the particle action (2.29). The first term in

equation (3.41) can be seen as the covariantization of theLagrangian of (3.10)with theNewton–

Cartanmetrics hµν and τµν , where the induced world-sheet metric (3.42) is the covariantization

of (3.5) with τµν . Analogously to the point particle, the Lagrangian (3.41) is quasi-invariant

under the gauged deformed stringy Galilei algebra. Under Za-transformations δmµ
a = ∂µσ a,

the Lagrangian (3.41) transforms as a total derivative, while the other transformations leave

the Lagrangian invariant. In particular, this applies to the Zab-transformations which are given

by

δmµ
a = −σ abτµ

b or τµ[aδmµ
b] = σ ab. (3.43)

The latter way of writing shows that the projection τµ[amµ
b] of the gauge field mµ

a can be

gauged away. The m(µ
aτν)

a term in the Lagrangian (3.41) is needed in order to render the

action invariant under boost transformations which transform both the spatial metric hµν and

the extension gauge field mµ
a as follows:

δhµν = 2λa′ae(µ
a′
τν)

a, δmµ
a = λa′aeµ

a′
. (3.44)

Like in the particle case, the presence of the extension gauge field mµ
a represents an

ambiguity when trying to solve the 0-connection in terms of the (singular) metrics (3.33)

of Newton–Cartan spacetime. Namely, the metric compatibility conditions on hµν and τµν

19 An analogous results holds for the dynamics of the non-relativistic string, see equation (32) of [18].
20 Note that the stringy Newton–Cartan theory does not only contain the metric hµν but also the extension gauge field

mµ
a, see equation (3.20).
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give the solution (3.37), but Kµν
a = −Kνµ

a is an ambiguity which is not fixed by the metric

compatibility conditions. It is the specific solution (3.36) of the vielbein postulates which

fixes this ambiguity to be (3.38). A new feature of the string case is that the ambiguity Kµν
a

has its own ambiguity. In other words, there is an ambiguity in the ambiguity! To show how

this works we first note that from equation (3.37) it follows that the longitudinal projection of

(3.38) does not contribute to the connection because it is multiplied by hρσ . This is equivalent

to saying that expression (3.37) is invariant under the shift transformations21

Kµν
a → Kµν

a + τ[µ
cτν]

bY a
bc (3.45)

for arbitrary parameters Y a
bc. We will now argue that this ambiguity in Kµν

a is related to the

second extension gauge field mµ
ab, which in contrast to mµ

a does not enter the Lagrangian

(3.41). We have seen that the absence ofmµ
ab in the dynamics follows from the shift symmetry

(3.39), which prevents the field mµ
ab to enter the 0-connection. We now come back to the

role of the constraint (3.31) Using equation (3.38), we see that this constraint relates a certain

projection of mµ
ab to the longitudinal projection of the ambiguity Kµν

a. This longitudinal

projection of the ambiguity is precisely the part that drops out of the expression for 0

corresponding to the shift invariance of (3.37) under (3.45). Therefore, the constraint (3.31)

implies that a certain projection of the extension gauge field mµ
ab can be regarded as an

‘ambiguity in the ambiguity’.

Summarizing, we conclude that the extension gauge field mµ
a, like in the particle case,

corresponds to an ambiguity in the 0-connection. This gauge field occurs in the string action

(3.41). A new feature, absent in the particle case, is that there is a second extension gauge field

mµ
ab which corresponds to an ambiguity in the ambiguity. This extension gauge field does not

occur in the string action (3.41).

Having clarified the role of the extension gauge fields, we now vary the Lagrangian (3.41)

which gives, after a long calculation22 similar to the one leading to (2.31),

τ ᾱβ̄
(

∇ᾱ∂β̄xρ + ∂ᾱxµ∂β̄xν0ρ
µν

)

= 0, (3.46)

where the 0-connection is given by (3.36). This geodesic equation can be seen as the

covariantization of (3.17), and in the particle case reduces to (2.31) as one would expect.

The equations describing the dynamics of stringy Newton–Cartan spacetime are given by

Rµν (0) = VD−2Gρτµν, (3.47)

just as for the point particle. TheRicci tensor however now is given in terms of the0-connection

(3.36).

Tomake contactwith aGalilean observer,we impose the additional kinematical constraints

Rµν
ab(M) = Rµν

a′b′
(M′′) = 0. (3.48)

Here, M′′ refers to the generators of spatial rotations, whereas M refers to the generator of a

longitudinal rotation which was absent for the particle. It should be stressed that one is not

forced to impose these curvature constraints, and one could stay more general and try to solve

the resulting theory of gravity for a curved longitudinal and transverse space. In particular,

in adding a cosmological constant in the next section, we will impose a different constraint

for the longitudinal space. The first constraint of (3.48) allows one to gauge fix ωµ
ab = 0,

expressing the flatness of the longitudinal space. This solves the constraints (3.26) and allows

one to go to the so-called adapted coordinates, in which τµ
a is given by

τµ
a = δµ

a. (3.49)

21 An analogous result was obtained in [18].
22 Some details are given in appendix C.
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In terms of these adapted coordinates, the (longitudinal and transverse) vielbeins and their

inverses are given by

τµ
a =

(

δa
α, 0

)

, eµ
a′ =

(

− ek
a′
τ k

a, ei
a′)

,

τµ
a =

(

δα
a , τ i

a

)

, eµ
a′ =

(

0, ei
a′
)

, (3.50)

in terms of the independent components τ i
a and the transverse vielbeins ei

a′
together with

their inverse ei
a′ . Note that in adapted coordinates the transverse vielbein is non-singular in

the transverse space, i.e.

ei
a′

e j
a′ = δ

j

i , ei
a′

ei
b′ = δa′

b′ . (3.51)

The second kinematical constraint of (3.48) expresses the choice of flat transverse directions.

It implies, using equation (3.40), that Ri
jkl (0) = 0 and allows us to choose a flat Cartesian

coordinate system in the transverse space such that

ei
a′ = δi

a′
, ei

a′ = δi
a′ . (3.52)

As such the constraints (3.48) can be regarded as metric ansätze in which one is looking for

solutions of the metrics describing both a flat transverse space and a flat foliation space. All

metric components can now be expressed in terms of the only nontrivial components τ i
a:

τµ
a =

(

δa
α, 0

)

, eµ
a′ =

(

− τ a′
a, δi

a′)
,

τµ
a =

(

δα
a , τ i

a

)

, eµ
a′ =

(

0, δi
a′
)

, (3.53)

where we no longer distinguish between (longitudinal, transverse) curved indices (α, i) and

(longitudinal, transverse) flat indices (a, a′).

Plugging the conventional constraints (3.22) and the kinematical constraints (3.48) into

the Bianchi identities (B.6), we find that

Rαβ (0) = −δa
(αδb

β)e
ρ

a′τ σ
bRρσ

a′a(M′) (3.54)

are the only nonzero components of the Ricci tensor. Furthermore, the remaining nonzero

curvatures R(M′) and R(Z) are constrained by the following algebraic identities:

R[λµ
a′a(M′)τν]

a = R[λµ
a′a(M′)eν]

a′ − R[λµ
ab(Z)τν]

b = 0. (3.55)

The kinematical constraint Rµν
a′b′

(M′′) = 0 also allows one to gauge fix ωµ
a′b′ = 0. We will

now show that in this gauge

0i
α j = 0, 0i

αβ = ∂ i8αβ, (3.56)

where the latter equation defines the gravitational potential 8αβ .

We first show that 0i
α j = 0. Using expressions (3.53), equation (3.36) and the fact that

ω j
ab = ωµ

a′b′ = 0, we find that 0i
α j is given by

0i
a j = 1

2

(

− ∂ jτ
i
a − ω j

ia
)

. (3.57)

Next, using expressions (3.23)–(3.25), we find that

ω j
ia = −∂[im j]a − ∂ (iτ j)a, (3.58)

where we have used thatωi
ab = 0. Furthermore, the gauge-fixing condition ωk

i j = 0 is already

satisfied but the gauge-fixing condition ωα
a′b′ = 0 leads to the constraint

ωa
i j = −∂[im j]a − ∂ [iτ j]a = 0. (3.59)

This constraint equation implies that mia can be written as

mia = −τ i
a − ∂ima, (3.60)

18



Class. Quantum Grav. 29 (2012) 235020 R Andringa et al

where ma are the transverse spatial gradient components of mia. Substituting the expression

for ω j
ia into that of 0i

a j, the result becomes proportional to the right-hand side of the constraint

equation (3.59), and hence, we find 0i
a j = 0.

We next show that 0i
αβ can be written as ∂ i8αβ defining a gravitational potential 8αβ .

Using (3.36), we derive the following expression23:

0i
ab = −∂(aτ

i
b) − ω(a

i
b), (3.61)

where we have used that ωα
ab = ωα

i j = 0. Following equations (3.23)–(3.25), we find that

ωa
ib is given by

ωa
ib = ∂amib − ∂imab + τ k

a∂[kmi]b + 1
2
τ k

a

(

∂iτ
k

b

)

+ 1
2
τ k

a∂kτ
i
b + 2mi

ab. (3.62)

Substituting this expression for ωa
ib back into that of 0i

ab and using (3.60), we indeed find that

0i
ab = ∂ i8ab with

8αβ (x) = m(αβ)(x) − 1
2
δi jτ

i
α(x)τ j

β (x) + ∂(αmβ)(x), (3.63)

where m(αβ) = m(α
aδa

β). This is the stringy generalization of equation (2.37).

Using the expressions for the components of the 0-connection calculated above, we may

now verify that the Newton–Cartan geodesic equation (3.46) and the Poisson equation (4.32)

corresponding to the second gauging procedure reduce to equations (3.17) and (3.19) derived

in the first gauging procedure. After gauge fixing the Newton–Cartan symmetries to the

acceleration-extended Galilei symmetries as described above, the Lagrangian (3.41) reduces

to the Lagrangian associated with the action (3.14), with the potential8αβ given by (3.63) and

γ̄ᾱβ̄ = τᾱβ̄ :
24

L = −
T

2

√

−det(τ )τ ᾱβ̄
(

∂ᾱxi∂β̄x jδi j + ∂ᾱxα∂β̄xβ
[

τ i
ατ j

βδi j − 2m(αβ) − 2∂(αmβ)

])

. (3.64)

The longitudinal components Rαβ (0) of the Ricci tensor become

Rαβ (0) = −δa
(αδb

β)e
ρ

a′τ σ
bRρσ

a′a(M′) = δi j∂i∂ j8αβ, (3.65)

such that indeed (4.32) gives the stringy Poisson equation (3.19). This finishes our discussion

of the string moving in a flat Minkowski spacetime. In the next section, we will consider the

addition of a cosmological constant.

4. Adding a cosmological constant

In order to study applications of the AdS/CFT correspondence based on the symmetry algebra

corresponding to a non-relativistic string, it is necessary to include a (negative) cosmological

constant 3. To explain how this can be done, we will discuss in section 4.1 the particle case.

In section 4.2, we will show how to go from particles to strings.

4.1. The particle case

Adding a negative cosmological constant in the relativistic casemeans that the Poincaré algebra

gets replaced by an AdS algebra corresponding to a particle moving in an AdS background.

It is well known that one cannot obtain general relativity with a (negative) cosmological

constant by gauging the AdS algebra in the same way that one can obtain general relativity

by gauging the Poincaré algebra [23]. The (technical) reason for this is that one cannot find a

set of (so-called conventional) curvature constraints whose effect is to convert the translation

23 Remember that we no longer distinguish between flat indices a and curved indices α.
24 After the gauge fixing, one has τᾱβ̄ = ∂ᾱxα∂β̄xβηαβ .

19



Class. Quantum Grav. 29 (2012) 235020 R Andringa et al

transformations into general coordinate transformations and, at the same time, to make certain

gauge fields to be dependent on others. The same is true for the non-relativistic limit of

the AdS algebra which is the Newton–Hooke algebra [15, 16]. Therefore, we cannot apply

the same gauging procedure to the Newton–Hooke algebra that we used for the Bargmann

algebra in section 2. It turns out that we do not need to apply a full gauging procedure to

the Newton–Hooke algebra. When taking the non-relativistic limit of a particle moving in

an AdS background, which is a 3-deformation of the Minkowski background, one ends up

with the action of a non-relativistic particle moving in a harmonic oscillator potential. This

is a particular case of the non-relativistic particle action for a Galilean observer with zero

cosmological constant but with a particular nonzero value of the potential 8(x). In view of

this, it is convenient to write the potential 8(x) as the sum of a purely gravitational potential

φ(x) and an effective background potential φ3(x) describing the harmonic oscillator due to

the cosmological constant:

8(x) = φ(x) + φ3(x). (4.1)

Note that equation (4.1) points out a conceptual difference between the relativistic and the

non-relativistic notion of a cosmological constant, which will also be true for the string.

Namely, according to (4.1), one is always able to redefine the potential φ(x) in order to

absorb the cosmological constant into 8(x). But in the relativistic case such a redefinition of

3 into the metric gµν (x) is not possible. The non-relativistic particle action in the presence

of a cosmological constant is invariant under the Newton–Hooke symmetries which is a

3-deformation of the Galilei symmetries that we considered in section 2. A particularly

useful feature of the Newton–Hooke symmetries is that the3-deformed symmetries can all be

viewed as particular time-dependent transverse translations. Thismeans that, when gauging the

Galilei symmetries like we did in section 2, the Newton–Hooke symmetries are automatically

included. The consequence of this is that although we cannot perform the second gauging

procedure of section 2, i.e. gauge the full Newton–Hooke algebra, it is straightforward to

apply the first gauging procedure, i.e. gauge the transverse translation leading to arbitrary

accelerations between different frames, as is appropriate for a Galilean observer. Independent

of whether we are starting from the Galilei or Newton–Hooke symmetries, when we gauge the

transverse translations, we end up with precisely the same answer which we already derived

in section 2, but with a different interpretation of the potential 8(x). The difference is seen

when we turn off gravity. Without a cosmological constant, turning off gravity means setting

8(x) = φ(x) = 0 and there is no background potential, i.e. φ3(x) = 0. However, when

3 6= 0, turning off gravity means a different thing since now we want to end up with a nonzero

background potential φ3(x) 6= 0. According to equation (4.1), it means setting8(x) = φ3(x)

or φ(x) = 0. One can view this as a different gauge condition and that is the reason why, in

the presence of a nonzero cosmological constant, the symmetries that relate inertial frames

are given by the Newton–Hooke symmetries instead of the Galilei symmetries. For a Galilean

observer, however, we end up with precisely the same geodesic equation and bulk equation of

motion that we derived in the absence of a cosmological constant in the previous section.

Before showing how the Newton–Hooke symmetries arise as the transformations that

relate inertial frames, it is instructive to first re-derive the Galilei symmetries starting

from a Galilean observer. Consider the acceleration-extended Galilei symmetries given in

equations (2.11) and (2.12). Without a cosmological constant, turning off gravity means

setting 8(x) = 0. Given the transformation rule (2.12) of the background potential 8(x), this

implies the following restriction on the transverse translations:

d

dτ

(

ξ̇ i

ṫ

)

= 0, (4.2)
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where we have ignored the standard ambiguity in the potential represented by the function

g(t) in equation (2.12). This restriction implies that ξ̇ i = viṫ or ξ i(t) = vit + ζ i. This brings

us back to the Galilei transformations given in equation (2.7).

We now turn to the case of a nonzero cosmological constant 3. It turns out that when

taking the non-relativistic limit as is described in section 2 of a particle moving in an (A)dS

background25, one ends up with a particle moving in an effective background potential

φ3 = − 1
2
3xixi describing a harmonic oscillator [15]:

S =
m

2

∫ (

ẋiẋ jδi j

ṫ
+ ṫ 3xix jδi j

)

dτ. (4.3)

We take the convention in which 3 > 0 describes a dS space, whereas 3 < 0 gives an AdS

space. In the following, we will consider the AdS case only. The action (4.3) is nothing else

than the action (2.10), with 8(x) being the harmonic oscillator potential:

8(x) = φ3(x) = − 1
2
3xixi. (4.4)

Viewed as a gauge condition, and using the transformation rule (2.12), this equation is invariant

under transverse translations that satisfy the following constraint:

1

ṫ

d

dτ

(

ξ̇ i

ṫ

)

= 3ξ i. (4.5)

Here, we have again ignored the ambiguity in the potential represented by the function g(t) in

equation (2.12). For 3 < 0, i.e. AdS space, the restriction (4.5) on ξ i is solved by26

ξ i(t) = viR sin

(

t

R

)

+ ζ i cos

(

t

R

)

, (4.6)

where

R2 ≡ −
1

3
. (4.7)

Note that for 3 → 0 or R → ∞ this expression reduces to the Galilei result ξ i(t) = vit + ζ i.

The complete transformation rules are now obtained by combining the transformations

(4.6) with the constant time translations and the spatial rotations:

δt = ζ 0, δxi = λi
jx

j + viR sin

(

t

R

)

+ ζ i cos

(

t

R

)

. (4.8)

This defines the Newton–Hooke algebra whose nonzero commutators are given by [15] (see

also [16])

[Pa′ , H] = R−2Ga′ , [Ga′ , H] = −Pa′ ,

[Ma′b′ , Pc′ ] = −2ηc′[a′Pb′], [Ma′b′ , Gc′ ] = −2ηc′[a′Gb′],

[Ma′b′ , Mc′d′ ] = 4η[a′[c′Md′]b′].

(4.9)

Here, H, Pa′ , Ga′ and Ma′b′ are the generators of time translations, spatial translations, boosts

and spatial rotations, with parameters ζ 0, ζ a′
, va′

and λa′b′
, respectively. We note that the

cosmological constant shows up in the [Pa′ , H] commutator, but not in the [Pa′ , Pb′ ] commutator.

This is consistent with the fact that the transverse space is flat. We also observe that at this

stage the Newton–Hooke algebra (4.9) does not contain a central extension like the Bargmann

algebra, i.e. [Pa′ , Gb′ ] = 0. Similar to the Galilei particle action (2.6), the Newton–Hooke

25 For this, the cosmological constant 3 must be rescaled with a factor of ω−2.
26 For3 > 0, i.e. dS space, one obtains a similar expression but with the sine and cosine replaced by their hyperbolic

counterparts.
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particle action (4.3) suggests a central extension: the corresponding Lagrangian is quasi-

invariant under both boosts and translations, described by the parameter (4.6):

δL =
d

dτ

(

mδi jx
iξ̇ j

ṫ

)

=
d

dτ

(

mxiv jδi j cos

(

t

R

)

− mxiζ jδi j sin

(

t

R

))

. (4.10)

This is most easily seen by using the restriction (4.5) directly in the variation of the Lagrangian

corresponding to the action (4.3). In the limit R → ∞, i.e.3 → 0, the variation (4.10) reduces

to the variation (2.9). Calculating the Noether charges QP and QG for the translations and the

boosts, respectively, the Poisson brackets suggest the same central extension M as for the

Galilei particle:

[Pa′ , Gb′ ] = δa′b′M. (4.11)

Given the transformation rules (4.8), it is straightforward to calculate the commutators between

the different transformations and to verify that they are indeed given by the Newton–Hooke

algebra (4.9). As explained above, when viewed as the symmetries of the Newton–Hooke

particle described by the action (4.3), one obtains a centrally extended Newton–Hooke algebra.

The contraction R → ∞ on this algebra reproduces the Bargmann algebra. This the non-

relativistic analogue of the fact that the R → ∞ contraction on the (A)dS algebra yields the

Poincaré algebra.

To obtain the cosmological constant in the gauging procedure of the Bargmann algebra,

we relate the expression for the potential (2.37) in terms of the gauge field components to the

potential (4.1):

8(x) = m0(x) − 1
2
δi jτ

i(x)τ j(x) + ∂0m(x)

= φ(x) − 1
2
3xix jδi j. (4.12)

The Poisson equation (2.15) can then be written as

4φ(x) = VD−2Gρ(x) + (D − 1)3, (4.13)

where D is the dimension of spacetime.

4.2. The string case

We now wish to discuss the string case following the same philosophy as we used for the

particle case in the previous subsection.

Like in the particle case, we write the potential8αβ (x) as the sum of a purely gravitational

potential and a background potential that represents the extra gravitational force represented

by the nonzero cosmological constant 3:

8αβ (x) = φαβ (x) + φαβ,3(x). (4.14)

We first consider the case of a zero cosmological constant and show how the stringy Galilei

symmetries are recovered after turning off gravity. According to equation (3.16) the condition

8αβ (x) = 0 leads to the following restriction on the transverse translations:

∂ᾱ(
√

−γ̄ γ̄ ᾱβ̄ ∂β̄ξ i) = 0, (4.15)

where we have ignored the standard ambiguity in8αβ (x) represented by the arbitrary functions

gβ (xε ) in equation (3.16). This restriction is the stringy analogue of the restriction (4.2) that we

found in the particle case. It is precisely the same restriction that one finds if one requires that

the non-relativistic string action (3.10) is invariant under transverse translations. The solution
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of equation (4.15) is given by ξ i(xα ) = λi
βxβ + ζ i, which can be checked using expression

(3.6) of γ̄ ᾱβ̄ . This brings us back to the stringy Galilei symmetries given in equation (3.11).

We now consider a nonzero cosmological constant3. It turns out that when one considers

the non-relativistic limit of a string moving in an AdS background, one ends up with an

effective background potential given by [11]

φαβ,3 = 1
4
3xix jδi jταβ , (4.16)

where ταβ is an AdS2metric. At the same time one should replace the flat foliation of spacetime

by an AdS2 foliation. This means that both in the definition of γ̄ᾱβ̄ given in equation (3.5) and

the action (3.14), one should replace the flat metric ηαβ by the AdS2 metric ταβ . Setting also

8αβ (x) = 1
4
3xix jδi jταβ in equation (3.14), one obtains the action [11]

S = −
T

2

∫

d2σ
√

−γ̄ (γ̄ ᾱβ̄∂ᾱxi∂β̄x jδi j + 3xix jδi j), (4.17)

with γ̄ᾱβ̄ given by

γ̄ᾱβ̄ = ∂ᾱxα∂β̄xβταβ . (4.18)

The replacement of ηαβ by ταβ also applies to the transformation rule (3.16). This leads to the

following modified restriction on the transverse translations:

1
√

−γ̄
∂ᾱ(

√

−γ̄ γ̄ ᾱβ̄ ∂β̄ξ i) = −3ξ i. (4.19)

Note that we have again ignored the arbitrary functions gβ (xε ) in equation (3.16). For 3 < 0,

i.e. AdS space, the restriction (4.19) is solved for by the following expression for ξ i(xα ):

ξ i(xα ) = λi
0

√

z2 + R2 sin

(

t

R

)

+ λi
1z + ζ i

√
z2 + R2

R
cos

(

t

R

)

, (4.20)

where we have written xα = {t, z} and used that 3 = −R−2. Note that for R → ∞ this

expression reduces to the stringy Galilei one given by ξ i(xα ) = λi
βxβ + ζ i.

The complete transformation rules are obtained by combining the transformation rules

(4.20) with the spatial transverse rotations and the isometries of the AdS2 space that act on

xα = {t, z}. The form of the latter transformations in an explicit coordinate frame is given in
appendix D, see equation (D.6), where a few useful properties of the AdS2 foliation space have

been collected. All these transformations together define the stringy Newton–Hooke algebra:

[Ha, Hb] = R−2Mab, [Mbc, Ha] = −2ηa[bHc],

[Mcd, Me f ] = 4η[c[eM f ]d],

[Pa′ , Ha] = R−2Ma′a, [Mc′d′ , Me′ f ′ ] = 4η[c′[e′M f ′]d′],

[Mb′c, Ha] = ηacPb′ , [Mb′c′ , Pa′ ] = −2ηa′[b′Pc′],

[Mc′d, Me f ] = 2ηd[eM|c′| f ], [Mc′d′ , Me′ f ] = −2ηe′[c′Md′] f .

(4.21)

Note that the generators {Ha, Mab} span an so(2, 1) algebra describing the isometries of the

AdS2 foliation. Using the transformation rules given above and in appendix D, one may

calculate the different commutators and verify that the algebra defined by (4.21) is satisfied.

Note how the cosmological constant ends up in the [Ha, Hb] and [Pa′ , Ha] commutators, but not

in the [Pa′ , Pb′ ] commutator. This is consistent with the fact that the transverse space is flat but

that the two-dimensional longitudinal space is not flat. Like in the case of the point particle, the

stringy Newton–Hooke algebra (4.21) allows for an extension [11]. This is motivated by the

fact that the Lagrangian L corresponding to the string action (4.17) with the potential (4.16)

transforms as a total derivative under the boosts and translations described by the parameters

(4.20):

δL = ∂ᾱ(−T
√

−γ̄ γ̄ ᾱβ̄xi∂β̄ξi). (4.22)
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This ismost easily seen by using the restriction (4.19) directly in the variation of the Lagrangian

corresponding to (4.17). For R → ∞, the variation (4.22) reduces to the variation (3.13), and
in the particle case, it reduces to the variation (4.10). The resulting extension suggested by the

Poisson brackets is given by equation (B.3).

We now fit the cosmological constant into the gauging procedure for the string. One

important difference with the point particle case is that the foliation space for the string

becomes AdS2, whereas for the particle this foliation space is trivially flat. To accomplish

this AdS2 foliation, we change the on-shell curvature constraint (3.48) for the foliation space,

whereas for the transverse space we keep it unaltered:

Rµν
ab(M) = 3τ[µ

aτν]
b, Rµν

a′b′
(M′′) = 0. (4.23)

This gives an AdS2 space in the longitudinal direction and a flat transverse space. We then

choose coordinates such that

τµ
a =

(

τα
a, 0

)

, eµ
a′ =

(

− τ a′
aτα

a, δa′

i

)

,

τµ
a =

(

τα
a, τ

i
a

)

, eµa′ =
(

0, δi
a′

)

, (4.24)

where now we are not able to choose τα
a = δa

α , as we did in (3.50). Using the coordinates

chosen in appendix D, one can choose

τα
a =

(

(

1+
z2

R2

)1/2

δa
0,

(

1+
z2

R2

)−1/2

δa
1

)

, (4.25)

τα
a =

(

(

1+
z2

R2

)−1/2

δ0a,

(

1+
z2

R2

)1/2

δ1a

)

. (4.26)

In view of this, we should carefully distinguish between the curved longitudinal coordinates

{α} and the flat longitudinal coordinates {a}. In contrast, from now on, we will not distinguish
between flat and curved transverse coordinates {a′} and {i} because the transverse space is flat.
With the coordinates (4.24), the constraints (4.23) allow for the gauge choice

ωµ
a′b′ = 0, ωi

ab = 0. (4.27)

The condition ωi
a′b′ = 0 is trivially satisfied, but an explicit calculation reveals that

ωα
i j = −τα

a
(

∂ [iτ j]
a + ∂[im j]

a
)

= − 1
2
0i

α j = 0, (4.28)

so the gauge condition ωα
i j = 0 sets the connection component 0i

α j to zero, as in the Galilei

string case. From (4.28), we again arrive at (3.60). One should now be careful in distinguishing

between τ i
a, which is nonzero in general, and τi

a, which is zero for the coordinate choice

(4.24). With the spin connections (4.27) and (4.28), one can show that the expression for the

connection, i.e. equation (3.36), implies that again 0i
αβ = ∂ i8αβ , i.e. the 0-connection can

also for the AdS2 foliation be written as the transverse gradient of a potential. The potential

8αβ is now given by

8αβ = maω(α
abτβ)

b + τ(α
a∂β)ma + τ(α

amβ)
a − 1

2
τ(α

aτβ)
bτ j

aτ
j
b, (4.29)

which should be compared to the potential for the flat foliation, see equation (3.63). To describe

the splitting described in the beginning of this section with the background given by (4.16),

we put the potential (4.29) equal to (4.14). That the set of gauge fields appearing on the

right-hand side of (4.29) can give rise to an arbitrary symmetric, 8αβ can be seen by taking,

e.g., the realization ma = τ i
a = 0 (and, thus, through (3.60), mi

a = 0) in the potential (4.29)

and expressing the remaining longitudinal components mα
a in terms of 8αβ . The symmetric

longitudinal projection of mµ
a is then given by

τα(amα
b) = ταaτ βb8αβ, (4.30)

24



Class. Quantum Grav. 29 (2012) 235020 R Andringa et al

whereas the antisymmetric longitudinal projection of mµ
a, given by τ α[amα

b], can be gauged

away through a Zab transformation as is clear from equation (3.43). As such mµ
a can be

expressed in terms of 8αβ . With {0i
αβ, 0ε

αβ} being the only nonzero connection coefficients,
the longitudinal components of the Ricci tensor become

Rαβ (0) = 18αβ + Rαβ (AdS2)

= 1φαβ + (D − 1)3ταβ , (4.31)

where we have used that Rαβ (AdS2) = 3ταβ . Therefore, the nonzero components of the

Poisson equation (4.32) read as follows [13]:

1φαβ = (VD−2Gρ − (D − 1)3)ταβ , (4.32)

where D is the dimension of spacetime. Notice how the Laplacian on the left only contains

information about the transverse space, whereas the geometry of the AdS2 foliation is only on

the right-hand side of (4.32). This concludes our discussion of the addition of the cosmological

constant to the theory.

5. Conclusions and outlook

We have shown how the theory of Newton–Cartan can be extended from particles moving

in a flat background to strings moving in a cosmological background. One way to obtain the

desired equations corresponding to these extensions is to gauge the transverse translations.

This necessitates the introduction of a new field, which is identified as the gravitational

potential. The resulting equations of motion are the ones used by a Galilean observer.

Alternatively, one can first gauge the full extended (stringy) Galilei algebra and, next, gauge

fix some of the symmetries in order to obtain the symmetries that are appropriate to a

Galilean observer. The (central) extensions of the algebras involved play a crucial role in

this procedure. To obtain the (stringy) Newton–Cartan theory, conventional constraints are

imposed to convert the spacetime translations into general coordinate transformations and to

make the spin connections dependent fields. Furthermore, on-shell constraints are imposed on

the curvature of the transverse space and, in the string case, on the curvature of the foliation

space. The transverse space is chosen to be flat, whereas for the string the on-shell constraint

on the longitudinal boost curvature can be chosen such that one obtains either a flat foliation

(corresponding to the stringy Galilei group) or an AdS2 foliation (corresponding to the stringy

Newton–Hooke group). The first choice describes the non-relativistic limit of a string moving

in a Minkowski background, whereas the second choice describes the non-relativistic limit

of a string moving in an AdSD background. The analysis can easily be extended to arbitrary

branes, in which case one should use extended brane Galilei algebras [18].

It is interesting to compare our results with the literature on the application of Newton–

Cartan theory in the non-relativistic limit of the AdS/CFT correspondence. This has been

discussed in, e.g., [24, 25] where some subtleties of this application are discussed. In [13], it

was noted that the non-relativistic limit on the CFT side of the correspondence should give

the so-called Galilei conformal algebra [26, 27]. This Galilean conformal algebra27 is the

boundary realization of the stringy Newton–Hooke algebra in the bulk [29]. The dual gravity

theory should then be a Newton–Cartan theory with an AdS2 foliation describing strings,

instead of the usual R foliation which describes particle Newton–Cartan theory. The gauging

procedure outlined in this work provides the framework of developing such a theory from a

gauge perspective.

27 The spacetime Bargmann structure has been analyzed in [28].
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It is known that the Newton–Cartan theory can be obtained from a dimensional reduction

of general relativity along a null-Killing vector; see, e.g., [7, 30].28 The central charge gauge

field mµ is related to the Kaluza–Klein vector corresponding to this null direction. It would

be interesting to investigate if the stringy version of the Newton–Cartan theory presented

in this paper can also be obtained by a null reduction from higher dimensions such that

the deformation potentials mµ
a and mµ

ab obtain a similar Kaluza–Klein interpretation. This

possibility should be related to the fact that the extended Newton–Hooke p-brane algebra in

D dimensions is a subalgebra of the ‘multitemporal’ conformal algebra SO(D + 1, p + 2) in
one dimension higher [18].

One way to obtain null directions is to start from a relativistic string coupled to a constant

B-field with vanishing field strength and to T-dualize this string along its spatial world-sheet

direction and perform the non-relativistic limit. The T-dual picture is a pp-wave which has a

null direction [17]. One could now use this null direction for a Kaluza–Klein reduction along

the lines of [30] and see whether one obtains the stringy Newton–Cartan theory constructed

in this paper.

Finally, an interesting extension of the stringy Newton–Cartan theory would be to apply

the gauging procedure as presented here to the supersymmetric extension of the stringy Galilei

algebra [17]. We hope to return to these issues in the nearby future.
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Appendix A. Notation and conventions

Our notation and conventions are as follows. For the metric, the mostly plus convention is

taken. A positive cosmological constant 3 > 0 describes a de Sitter space, whereas 3 < 0

describes an AdS space.

Flat target-space indices are given by A = {a, a′}, where {a} is longitudinal and {a′} is
transverse, e.g.

ζ A = {ζ a, ζ a′}. (A.1)

For a particle, we write {a = 0} and {a′ = 1, . . . , D − 1}, whereas for a string we write
{a = 0, 1} and {a′ = 2 . . . D − 1}. Curved target-space indices are given by µ = {α, i}, where
{α} is longitudinal and {i} is transverse, e.g.

ξµ = {ξα, ξ i}. (A.2)

For a particle, we write {α = 0} and {i = 1, . . . , D − 1}, and for a string, we write {α = 0, 1}
and {i = 2, . . . , D − 1}. Finally, we indicate world-sheet indices with {ᾱ, β̄, . . .}, and the
world-sheet coordinates as {σ ᾱ}.

28 In [30], also a proposal for an action describing the NC bulk dynamics has been made. For AdS/CFT applications,

this is a desirable feature.
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Appendix B. The extended stringy Galilei algebra

We associate the following generators with the symmetries of the extended stringy Galilei

algebra [12] :

Ha : longitudinal translations,

Pa′ : transverse translations,

Mab : longitudinal Lorentz transformations,

Ma′a : ‘boost’ transformation,

Ma′b′ : transverse rotations,

Za, Zab : extended transformations,

(B.1)

with Zab = −Zba.

The nonzero commutators of the un-deformed stringy Galilei algebra read

[Mb′c, Ha] = ηacPb′ , [Mb′c′ , Pa′ ] = −2ηa′[b′Pc′],

[Mc′d, Me f ] = 2ηd[eM|c′| f ], [Mc′d′ , Me′ f ] = −2ηe′[c′Md′] f ,

[Mc′d′ , Me′ f ′ ] = 4η[c′[e′M f ′]d′] [Mbc, Ha] = −2ηa[bHc],

(B.2)

where a = 0, 1 are the two longitudinal foliating directions and a′ = 2, . . . , D−1 are theD−2
transverse directions. Note that the Lorentz algebra so(1, 1) of the two-dimensional foliation

space is Abelian, while for general p-branes, where the symmetries of the foliation space are

generated by the algebra so(1, p), this would not be the case. The extensions suggested by the

Poisson brackets corresponding to the non-relativistic string action (3.10) are given by [18]

[Pa′ , Mb′b] = ηa′b′Zb, [Ma′a, Mb′b] = −ηa′b′Zab,

[Ha, Zbc] = 2ηa[bZc], [Zab, Mcd] = 4η[a[cZd]b],

[Za, Mbc] = 2ηa[bZc].

(B.3)

The gauge transformations of the gauge fields (3.20) corresponding to the generators (B.1) of

the deformed stringy Galilei algebra are given by

δτµ
a = ∂µτ a − τ bωµ

ab + λabτµ
b,

δeµ
a′ = ∂µζ a′ − ζ b′

ωµ
a′b′ + λa′b′

eµ
b′ + λa′aτµ

a − τ aωµ
a′a,

δωµ
ab = ∂µλab,

δωµ
a′a = ∂µλa′a − λa′bωµ

ab + λabωµ
a′b + λa′b′

ωµ
b′a − λb′aωµ

a′b′
,

δωµ
a′b′ = ∂µλa′b′ + 2λc′[a′

ωµ
b′]c′

,

δmµ
a = ∂µσ a + λa′aeµ

a′ − ζ a′
ωµ

a′a + λabmµ
b − σ bωµ

ab + τ bmµ
ab − σ abτµ

b,

δmµ
ab = ∂µσ ab − λa′aωµ

a′b + λa′bωµ
a′a + σ c[aωµ

b]c + λc[amµ
b]c,

(B.4)

where we have used the gauge parameters (2.18). The corresponding gauge-invariant

curvatures are given by29

Rµν
a(H) = 2D[µτν]

a,

Rµν
a′
(P) = 2

(

D[µeν]
a′ − ω[µ

a′aτν]
a
)

,

Rµν
ab(M) = 2 ∂[µων]

ab,

Rµν
a′a(M′) = 2D[µων]

a′a,

Rµν
a′b′

(M′′) = 2
(

∂[µων]
a′b′ − ω[µ

c′a′
ων]

b′c′)
,

Rµν
a(Z) = 2

(

D[µmν]
a + e[µ

a′
ων]

a′a − τ[µ
bmν]

ab
)

,

Rµν
ab(Z) = 2

(

D[µmν]
ab + ω[µ

a′aων]
a′b

)

,

(B.5)

29 For general p-branes, we would have δωµ
ab = ∂µλab + 2λc[aωµ

b]c and Rµν
ab(M) = 2(∂[µων]

ab − ω[µ
caων]

bc).
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where M, M′ and M′′ indicate the generators corresponding to longitudinal Lorentz

transformations, ‘boost’ transformations and transverse rotations, respectively. The derivative

Dµ is covariant with respect to these M, M′ and M′′ transformations.

Finally, the curvatures (B.5) satisfy the Bianchi identities

D[ρRµν]
a(H) = −R[ρµ

ab(M)τν]
b,

D[ρRµν]
a′
(P) = −R[ρµ

a′b′
(M′′)eν]

b′ − R[ρµ
a′a(M′)τν]

a,

D[ρRµν]
ab(M) = 0,

D[ρRµν]
a′a(M′) = −R[ρµ

ab(M)ων]
a′b − R[ρµ

a′b′
(M′′)ων]

b′a,

D[ρRµν]
a′b′

(M′′) = 0,

D[ρRµν]
a(Z) = −R[ρµ

ab(M)mν]
b + R[ρµ

a′
(P)ων]

a′a − R[ρµ
a′a(M′)eν]

a′
,

−R[ρµ
a(H)mν]

ab + R[ρµ
ab(Z)τν]

b,

D[ρRµν]
ab(Z) = R[ρµ

c[a(M)mν]
b]c + R[ρµ

a′a(M′)ων]
a′b − R[ρµ

a′b(M′)ων]
a′a.

(B.6)

Appendix C. Newton–Cartan geodesic equations

Here, we give some details about the derivation of the geodesic equations (2.31) and (3.46).

We start with the point particle case. For that purpose, we write the Lagrangian (2.28) as

L =
m

2
N−1ẋµẋν (hµν − 2mµτν )

≡
m

2
N−1ẋµẋνHµν, (C.1)

where we defined

Hµν ≡ hµν − 2m(µτν), N ≡ τµẋµ. (C.2)

Varying the Lagrangian (C.1) with respect to {xλ} and using the metric compatibility condition
∂[µτν] = 0 gives

− Nm−1 δL

δxλ
=

(

N−2ṄτλHµν −
1

2
N−1τλ∂ρHµν ẋρ −

1

2
∂λHµν + ∂νHµλ

)

ẋµẋν

− N−1τλHµν ẋµẍν − N−1ṄHµλẋµ + Hµλẍµ = 0. (C.3)

First, we contract this equation with hλσ . This gives

hλσ
(

∂νHµλ − 1
2
∂λHµν

)

ẋµẋν + hλσ Hµλẍµ − N−1Ṅhλσ Hµλẋµ = 0. (C.4)

One can now use the Newton–Cartan metric relations (2.22), ∂[µτν] = 0 and

Ṅ = τµẍµ + ∂µτν ẋµẋν . (C.5)

Some manipulation then shows that (C.4) gives the geodesic equation (2.31),

ẍµ + 0µ
νρ ẋν ẋρ =

Ṅ

N
ẋµ, (C.6)

with the connection given by (2.26). Second, one can contract (C.3) with τ λ. The resulting

expression contains, among others, terms proportional to ẍµ. If one uses the geodesic

equation (C.6) to rewrite these in terms of ẋµ, one can finally show that this τ λ-contraction of

(C.3) is trivially satisfied.

The calculation concerning the string Lagrangian (3.41) leading to the stringy geodesic

equation (3.46) can be made in a similar way. We first write

Hµν = hµν − 2m(µ
aτν)

a, (C.7)
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such that (3.41) becomes

L = −
T

2

√

−det(τ )τ ᾱβ̄∂ᾱxµ∂β̄xνHµν . (C.8)

We next use the relations

δ
√

−det(τ ) = 1
2

√
−det(τ )τ ᾱβ̄δτᾱβ̄ ,

δτ ᾱβ̄ = −τ ᾱγ̄ τ β̄ε̄δτγ̄ ε̄,

δτᾱβ̄ = 2∂ᾱxµ∂β̄δxλτµλ + ∂ᾱxµ∂β̄xν∂λτµνδxλ,

∂ᾱ

(√
−det(τ )τ ᾱβ̄∂β̄xµ

)

=
√

−det(τ )τ ᾱβ̄∇ᾱ∂β̄xµ,

∂ρτµν + ∂µτρν − ∂ντρµ = 0λ
µρτλν,

(C.9)

where the last identity follows from the metric compatibility condition ∇ρτµν = 0. Varying

(C.8) with respect to {xλ} now gives the geodesic equation (3.46),

τ ᾱβ̄
(

∇ᾱ∂β̄xρ + ∂ᾱxµ∂β̄xν0ρ
µν

)

= 0, (C.10)

with the connection0ρ
µν given by (3.37). This connection is equivalent to the connection (3.36)

given by the vielbein postulates.

Appendix D. Some properties of AdS2

In terms of coordinates xα = {t, z}, we write the AdS2 metric as ταβ , and the corresponding

line interval as

ds2 = −
(

1+
z2

R2

)

dt2 +
(

1+
z2

R2

)−1

dz2, (D.1)

where R is the radius of curvature. The nonzero Christoffel components in this coordinate

system are given by

0z
tt = z

(

z2 + R2

R4

)

, 0z
zz =

−z

z2 + R2
, 0t

zt =
z

z2 + R2
. (D.2)

The three isometries of the AdS2-space parametrized by {ζ 0, ζ 1, λ01} are described by the
Killing vectors30

k{01} =
zR cos t

R√
z2 + R2

∂t +
√

z2 + R2 sin
t

R
∂z,

k{02} = −R∂t, (D.3)

k{12} =
Rz sin t

R√
z2 + R2

∂t −
√

z2 + R2 cos
t

R
∂z.

One can check that these vectors indeed form an so(2, 1) algebra and that the components of

the vectors (D.3) obey the Killing equation

Lkταβ = 2∇(αkβ) = 0. (D.4)

30 Note that k{02} describes the fact that the AdS2 metric is static. We could rescale the time coordinate t with R to

obtain k{02} = −∂t .
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Acting with the Killing vectors (D.3) on the coordinates xα = {t, z} induces the infinitesimal
isometry transformations

δHt = ζ 0 − ζ 1
z

√
z2 + R2

sin

(

t

R

)

,

δHz = ζ 1

√
z2 + R2

R
cos

(

t

R

)

, (D.5)

δMt = λ01
zR cos

(

t
R

)

√
z2 + R2

,

δMz = − λ01
√

z2 + R2 sin

(

t

R

)

.

Note that in the limit R → ∞ these rules reduce to the stringy Galilei ones given by

ξα(xα ) = λα
βxβ + ζ α , which are the isometries of a flat M1,1 foliation space.
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Norm. Supér. 40 325–412

[9] Gomis J and Ooguri H 2001 Nonrelativistic closed string theory J. Math. Phys. 42 3127 (arXiv:hep-th/0009181)

[10] Danielsson U H, Guijosa A and Kruczenski M 2000 IIA/B, wound and wrapped J. High Energy

Phys. JHEP10(2000)020 (arXiv:hep-th/0009182)

[11] Gomis J, Kamimura K and Townsend P K 2004 Non-relativistic superbranes J. High Energy

Phys. JHEP11(2004)051 (arXiv:hep-th/0409219)

[12] Brugues J, Curtright T, Gomis J and Mezincescu L 2004 Non-relativistic strings and branes as non-linear

realizations of Galilei groups Phys. Lett. B 594 227 (arXiv:hep-th/0404175)

[13] Bagchi A and Gopakumar R 2009 J. High Energy Phys. JHEP07(2009)037 (arXiv:0902.1385 [hep-th])

[14] Ortı́n T 2004 Gravity and Strings (Cambridge: Cambridge University Press) section 4.5 ISBN 978-0-521-

82475-0

[15] Bacry H and Levy-Leblond J 1968 Possible kinematics J. Math. Phys. 9 1605

[16] Gibbons G W and Patricot C E 2003 Newton–Hooke space-times, Hpp waves and the cosmological constant

Class. Quantum Grav. 20 5225 (arXiv:hep-th/0308200)

[17] Gomis J, Gomis J and Kamimura K 2005 Non-relativistic superstrings: a new soluble sector of AdS5 × S5

J. High Energy Phys. JHEP12(2005)024 (arXiv:hep-th/0507036)

[18] Brugues J, Gomis J and Kamimura K 2006 Newton–Hooke algebras, non-relativistic branes and generalized

pp-wave metrics Phys. Rev. D 73 085011 (arXiv:hep-th/0603023)
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