65 research outputs found

    Interaction of 1,3,2,4-benzodithiadiazines with aromatic phosphines and phosphites

    Get PDF
    Although an interaction between hydrocarbon and fluorocarbon 1,3,2,4-benzodithiadiazines (1 ) and P(C6H5)3 continuously produces chiral 1,2,3-benzodithiadiazol-2-yl iminophosporanes (2; in this work, 5,7-difluoro derivative 2a ) via 1:1 condensation, an interaction between 1 and other PR3 reagents gives different products. With R [DOUBLE BOND] OC6H5 and both hydrocarbon and fluorocarbon 1, only X=P(OC6H5)3 (X = S, O) were identified in the complex reaction mixtures by 13С and 31Р NMR and GC-MS. With R = C6F5, no interaction with the archetypal 1 was observed but catalytic addition of atmospheric water to the heterocycle afforded 2-amino-N-sulfinylbenzenesulfenamide (4 ). With electrophilic B(C6F5)3 instead of nucleophilic P(C6F5)3, only adduct H3N→B(C6F5)3 and a new polymorph of C6F5B(OH)2 were isolated and identified by X-ray diffraction (XRD). A molecular structure of 2a was confirmed by XRD, and the π-stacked orientation of one of phenyl groups and heterocyclic moiety was observed. This structure is in general agreement with that calculated at the RI-MP2 level of theory, as well as at three different levels of DFT theory with the PBE and B3LYP functionals. Mild thermolysis of 2a in a dilute decane solution gave persistent 5,7-difluoro-1,2,3-benzodithiazolyl (3a ) identified by EPR in combination with DFT calculations

    Fused 1,2,3-dithiazoles: convenient synthesis, structural characterization, and electrochemical properties

    Get PDF
    A new general protocol for synthesis of fused 1,2,3-dithiazoles by the reaction of cyclic oximes with S2Cl2 and pyridine in acetonitrile has been developed. The target 1,2,3-dithiazoles fused with various carbocycles, such as indene, naphthalenone, cyclohexadienone, cyclopentadiene, and benzoannulene, were selectively obtained in low to high yields. In most cases, the hetero ring-closure was accompanied by chlorination of the carbocyclic moieties. With naphthalenone derivatives, a novel dithiazole rearrangement (15→13) featuring unexpected movement of the dithiazole ring from α- to β-position, with respect to keto group, was discovered. Molecular structure of 4-chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13 was confirmed by single-crystal X-ray diffraction. Electrochemical properties of 13 were studied by cyclic voltammetry and a complex behavior was observed, most likely including hydrodechlorination at a low potential

    New NIR-emissive tetranuclear Er(III) complexes with 4-hydroxo-2,1,3-benzothiadiazolate and dibenzoylmethanate ligands: synthesis and characterization

    Get PDF
    New tetranuclear heteroleptic complexes [Er4(dbm)6(O-btd)4(OH)2] (1) and [Er4(dbm)4(O-btd)6(OH)2] (2) (O-btd = 4-hydroxo-2,1,3-benzothiadiazolate and dbm = dibenzoylmethanide) and their solvates with toluene, THF and CH2Cl2 were prepared using two synthetic approaches. The structures of the products were confirmed by single-crystal X-ray diffraction. Magnetic properties of 1 and 2 are in good agreement with X-ray data. The effective magnetic moment (μeff) values at 300 K for 1 and 2 corresponds to a system of 4 non-interacting Er(III) ions in the ground state 4J15/2 with g = 6/5. At ambient temperature and upon excitation with λexc = 450 nm, complexes 1 and 2 exhibit luminescence at ∼1530 nm, i.e. in the near infra-red (NIR) region. The luminescence intensity grows with increasing the number of the (O-btd)−ligands in the complexes. This observation suggests (O-btd)− as a new efficient antenna ligand for the lanthanide-based NIR luminescence

    Synthesis and properties of the heterospin (S1 = S2 = 1/2) radical-ion salt bis(mesitylene)molybdenum(I) [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazolidyl

    Get PDF
    The authors are grateful to the Presidium of the Russian Academy of Sciences (Project 8.14), the Royal Society (RS International Joint Project 2010/R3), the Leverhulme Trust (Project IN-2012-094), the Siberian Branch of the Russian Academy of Sciences (Project 13), the Ministry of Education and Science of the Russian Federation (Project of Joint Laboratories of Siberian Branch of the Russian Academy of Sciences and National Research Universities), and the Russian Foundation for Basic Research (Projects 13-03-00072 and 15-03-03242) for financial support of various parts of this work. N.A.S. thanks the Council for Grants of the President of Russian Federation for postdoctoral scholarship (grant MK-4411.2015.3). B.E.B. is grateful for an EaStCHEM Hirst Academic Fellowship. A.V.Z. thanks the Foundation named after D. I. Mendeleev, Tomsk State University, for support of his work.Low-temperature interaction of [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (1) with MoMes2 (Mes = mesitylene / 1,3,5-trimethylbenzene) in tetrahydrofuran gave the heterospin (S1 = S2 = 1/2) radical-ion salt [MoMes2]+[1]– (2) whose structure was confirmed by single-crystal X-ray diffraction (XRD). The structure revealed alternating layers of the cations and anions with the Mes ligands perpendicular, and the anions tilted by 45°, to the layer plane. At 300 K the effective magnetic moment of 2 is equal to 2.40 μB (theoretically expected 2.45 μB) and monotonically decreases with lowering of the temperature. In the temperature range 2−300 K, the molar magnetic susceptibility of 2 is well-described by the Curie-Weiss law with parameters C and θ equal to 0.78 cm3⋅K⋅mol–1 and −31.2 K, respectively. Overall, the magnetic behavior of 2 is similar to that of [CrTol2]+[1]– and [CrCp*2]+[1]–, i.e. changing the cation [MAr2]+ 3d atom M = Cr (Z = 24) with weak spin-orbit coupling (SOC) to a 4d atom M = Mo (Z = 42) with stronger SOC does not affect macroscopic magnetic properties of the salts. For the XRD structure of salt 2, parameters of the Heisenberg spin-Hamiltonian were calculated using the broken-symmetry DFT and CASSCF approaches, and the complex 3D magnetic structure with both the ferromagnetic (FM) and antiferromagnetic (AF) exchange interactions was revealed with the latter as dominating. Salt 2 is thermally unstable and slowly loses the Mes ligands upon storage at ambient temperature. Under the same reaction conditions, interaction of 1 with MoTol2 (Tol = toluene) proceeded with partial loss of the Tol ligands to afford diamagnetic product.PostprintPostprintPeer reviewe

    Matrix isolation and computational study of the photochemistry of 1,3,2,4-Benzodithiadiazine

    Get PDF
    Photolysis of 1,3,2,4-benzodithiadiazine (1) at ambient temperature yields stable 1,2,3-benzodithiazolyl radicals. In order to reveal the mechanism of this unusual transformation, the photochemistry of 1 was studied in argon matrices using IR and UV-vis spectroscopy. A series of intermediates, including four- and five-membered heterocyclic and o-quinoid acyclic species, were characterized spectroscopically with the help of quantum chemical calculations. With selective irradiation, these intermediates can be mutually interconverted as well as converted back to the starting compound

    Donor-acceptor coordination of anions by chalcogen atoms of 1,2,5-chalcogenadiazoles

    No full text
    Synthetic, structural, and thermodynamic aspects of the recently discovered new reaction, donor-acceptor coordination of anions (A–) by chalcogen atoms (E) of 1,2,5-chalcogenadiazoles, are considered. According to the quantum chemical calculations, the charge transfer from A– to the heterocycle via the mechanism of negative hyperconjugation (i.e., from the MO of the lone pair of A– to the virtual σ* orbital of the E—N bond of chalcogenadiazole) depends on the nature of E and A–, being 0.42—0.52 and 0.30—0.44 e in terms of the Mulliken and NBO methods, respectively. According to the X-ray diffraction data, the E—A– coordinate bond is always longer than the sum of the covalent radii but shorter than the sum of the van der Waals radii of the atoms forming the bond. The E—A– bond energy varies in a wide range, from ~25 kcal mol–1 comparable to the energy of weak covalent bonds (e.g., internal N—N bond in organic azides) to ~86 kcal mol–1 comparable to the C—C bond energy in organic compounds. The quantum chemical estimations of the thermodynamics of the donor-acceptor coordination of the anions by the chalcogen atoms of 1,2,5-chalcogenadiazoles indicate that for E = Te and Se this reaction may be of general character also covering E = S in some cases
    corecore