451 research outputs found

    Harmonic generation enhancement due to interaction of few-cycle light pulses in nonlinear dielectric coating on a mirror

    Get PDF
    We theoretically investigate reflection of a few-cycle light pulse from a mirror with nonlinear dielectric coating. We employ a nonlinear equation that describes spatiotemporal evolution of a few-cycle light pulse with a broad spectrum that lies in the transparency range of nonlinear dielectric media. This model is formulated directly for the electric field without slowly varying amplitude approximation. Analytical and numerical analysis shows that counter-propagating wave interactions in thin films can strongly enhance or suppress third harmonic generation of the central frequency, whereas this effect is neglected in the framework of slowly varying amplitude approximation

    Propagation and interaction of ultrashort electromagnetic pulses in nonlinear media with a quadratic-cubic nonlinearity

    Full text link
    Propagation of extremely short unipolar pulses of electromagnetic field ("videopulses") is considered in the framework of a model in which the material medium is represented by anharmonic oscillators (approximating bound electrons) with quadratic and cubic nonlinearities. Two families of exact analytical solutions (with positive or negative polarity) are found for the moving solitary pulses. Direct simulations demonstrate that the pulses are very robust against perturbations. Two unipolar pulses collide nearly elastically, while collisions between pulses with opposite polarities and a small relative velocity are inelastic, leading to emission of radiation and generation of a small-amplitude additional pulse.Comment: 12 pages, 10 figure

    Intra-arterial tert-Butyl-Hydroperoxide Infusion Induces an Exacerbated Sensory Response in the Rat Hind Limb and is Associated with an Impaired Tissue Oxygen Uptake

    Get PDF
    The objective of this study was to investigate oxidative stress and oxygen extraction mechanisms in an animal model of continuous intra-arterial infusion of a free radical donor and in an in vitro model using isolated mitochondria. tert-Butyl-hydroperoxide (tert-BuOOH, 25 mM) was infused for 24 h in the left hind limb of rats to induce soft tissue damage (n = 8). After 7 days, we assessed local sensory response, tissue oxygen consumption, oxygen radicals, and antioxidant levels. In vitro mitochondrial function was measured after stimulation of isolated mitochondria of skeletal muscle cells with increasing doses of tert-BuOOH. tert-BuOOH infusion resulted in an increased skin temperature (p = 0.04), impaired function, and a significantly increased pain sensation (p = 0.03). Venous oxygen saturation levels (p = 0.01) and the antioxidant ceruloplasmin (p = 0.04) were increased. tert-BuOOH inhibited mitochondrial function in vitro. Induction of free radical formation in the rat hind limb results in an exacerbated sensory response and is associated with impaired oxygen extraction, which likely results from mitochondrial dysfunction caused by free radicals

    The use of argon plasma coagulation in mammoplasty as a prevention of postoperative complications

    Get PDF
    The frequency of reoperations associated with complications after mammoplasty reaches 15 % during the first year. There are many ways and means for processing the soft tissues of the breast during mammoplasty, helping to reduce the risk of postoperative complications. The purpose of this work was to develop an algorithm for the application of the argon plasma technique for tissue treatment in mammoplasty. Material and methods. The study included 30 females aged 23 to 46 who underwent mammoplasty. The patients were divided into 2 groups of 15 people. In group 1, standard methods of processing soft tissues were used, and in group 2, the argon plasma technique was used in conjunction with the use of Aristo glue. Patients were observed in the early, late and distant postoperative period. Results. In the course of the study, in addition to the excellent coagulation and bactericidal action of argon plasma, the effect of “pulling up” the soft tissues of the mammary gland was found, which, in case of ptosis of I and II degrees, made it possible to use a smaller implant to achieve an optimal aesthetic result. Also, when using the argon plasma technology, no inflammatory processes were observed, the amount of exudative fluid in the drains decreased, the pain syndrome was significantly less pronounced in comparison with patients who underwent the standard method of tissue processing. Conclusions. This study confirms the fact that the use of argon plasma coagulation in the processing of breast tissue has a significant number of advantages compared to standard methods

    Laser doppler spectrum decomposition applied in diagnostics of microcirculatory disturbances

    Get PDF
    Laser Doppler flowmetry (LDF) is widely used to study blood microcirculation in the skin. However, during tradition signal processing based on the integral estimations of the power spectrum of detector photocurrent, the significant part of the information about the skin blood ow is lost. In this study, we propose to analyse the distribution of the blood perfusion over the Doppler shift frequencies, which correlate with the RBC velocity. This approach provides localisation of the blood ow oscillations in different subranges of the Doppler shift. The method applied together with the wavelet analysis has been tested in healthy volunteers and patients with psoriasis on the unaffected surface of the skin. It was revealed, that the significant difference in the amplitude of myogenic oscillations is allocated in the region of the low frequency Doppler shift (1-200 Hz). This frequency region can be associated with the signal from slow components of the skin microcirculation, that can point out on a different state of the lymphatic system of the skin in psoriasis

    Peculiarities of local blood microcirculation in patients with psoriasis

    Get PDF
    Local hemodynamic parameters were studied by means of laser Doppler flowmetry in 15 patients with psoriasis in the stationary stage, who have plaques on the inner surface of the forearm. LDF signals recorded at the site of psoriatic lesions of the tissue as well as in the intact tissue at a distance of 1-2 cm from the affected area were analysed. LDF signals were postprocessed by continuous wavelet transform using the Morlet wavelet

    Wearable laser Doppler sensors for evaluating the nutritive and shunt blood flow

    Get PDF
    This study is devoted to the trials of wearable diagnostic system that implements the laser Doppler flowmetry technique to analyse the blood microcirculation. We do preliminary test with involvement of limited group of healthy volunteers of different age and in patients with type 2 diabetes. During the series of measurements, the microcirculation parameters was measured for 10 minutes in the palmar surfaces of the big toes and in the inner sides of the upper thirds of the shins. A statistically significant differences was found in bypass index, nutritive and shunt blood ow in shins between older group of volunteers and patients' group as well as in shunt blood flow in fingers between younger and older groups of volunteers

    Studies of age-related changes in blood perfusion coherence using wearable blood perfusion sensor system

    Get PDF
    Laser Doppler flowmetry (LDF) was used for detection of age-related changes in the blood microcirculation. The LDF signal was simultaneously recorded from the 3rd fingers' pads of both hands. Amplitudes of the blood flow oscillations and wavelet coherence of the signals were used for the data analysis. A statistical difference in the synchronisation of myogenic oscillations was found between the two studied age groups. Myogenic oscillations of blood perfusion in the younger group had a higher wavelet coherence parameter than in the older group. Observed site-specific and age-related differences in blood perfusion can be used in the future in the design of experimental studies of the blood microcirculation system in patients with different pathologies

    Wearable sensor system for multipoint measurements of blood perfusion: pilot studies in patients with diabetes mellitus

    Get PDF
    The growing interest in the development of new wearable electronic devices for mobile healthcare provides great opportunities for the development of methods for assessing blood perfusion in this direction. Laser Doppler flowmetry (LDF) is one of the promising methods. A fine analysis of capillary blood ow structure and rhythm in the time and frequency domains, coupled with a new possibility of round-the-clock monitoring can provide valuable diagnostic information about the state of microvascular blood ow. In this study, wearable implementation of laser Doppler flowmetry was utilised for microcirculatory function assessment in patients with diabetes and healthy controls of two distinct age groups. Four wearable laser Doppler flowmetry monitors were used for the analysis of blood microcirculation. Thirty-seven healthy volunteers and 18 patients with type 2 diabetes mellitus participated in the study. The results of the studies have shown that the average perfusion differs between healthy volunteers of distinct age groups and between healthy volunteers of the younger age group and patients with diabetes mellitus. It was noted that the average level of perfusion measured on the wrist in the two groups of healthy volunteers has no statistically significant differences found in similar measurements on the fingertips. The wearable implementation of LDF can become a truly new diagnostic interface to monitor cardiovascular parameters, which could be of interest for diagnostics of conditions associated with microvascular disorders
    corecore