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Highlights

• Problem of few-cycle pulse reflection from a mirror with a nonlinear layer was solved
• Interaction of input and reflected pulse modify THG efficiency
• Counter-directional interactions increase spectral broadening for ultra-short pulses.
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Abstract

We theoretically investigate reflection of a few-cycle light pulse from a mirror

with nonlinear dielectric coating. We employ a nonlinear equation that describes

spatiotemporal evolution of a few-cycle light pulse with a broad spectrum that

lies in the transparency range of nonlinear dielectric media. This model is

formulated directly for the electric field without slowly varying amplitude ap-

proximation. Analytical and numerical analysis shows that counter-propagating

wave interactions in thin films can strongly enhance or suppress third harmonic

generation of the central frequency, whereas this effect is neglected in the frame-

work of slowly varying amplitude approximation.

Keywords: nonlinear optics; few-cycle pulses; harmonics generation
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1. Introduction

Nonlinear optics of waves consisting from only few cycles of electromagnetic

field is an active research field at the forefront of optics and laser physics of

ultra short intense pulses [1, 2, 3]. Various nonlinear effects associated with the
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few-cycle pulses have been investigated, including their temporal and spectral

broadening, self-focusing, nonlinear reflection, generation of single-cycle soli-

tons, co- and counter-directional interactions [4, 5, 6, 7, 8, 9, 10, 11]. Due to the

lack of destruction of optical media in the field of intense extremely short pulses,

the nonlinear effects can be significant, being beneficial to potential practical

applications ranging from all-optical signal processing in integrated circuits to

sum-frequency generation spectroscopy [12, 13].

In this paper, we investigate the generation of high frequency radiation in

a thin layer of nonlinear dielectric media on top of a perfect metal mirror, and

address the influence of interaction between the counter-propagating incident

and reflected pulses, considering Kerr-type of nonlinearity [14]. Such geometries,

as well as multilayered structures and micro-cavities, are usually analyzed using

the transfer matrix method [15, 16, 17]. Here, we develop a flexible theoretical

approach based on the wave equation formulated directly for the electric field

of a few-cycle optical pulse [18, 19, 20, 21, 22, 23, 24, 25], thus overcoming the

limitations of the traditional method of slowly varying envelope. For extremely

short pulses, we can neglect laser damage in thin dielectric films, which was

extensively investigated in series of papers [26, 27]. We predict that due to the

nonlinear interaction of a few-cycle light pulse with the wave reflected from the

mirror, there appears an increase in nonlinear phase modulation and spectral

broadening accompanied by a modification of third-harmonic generation (THG)

efficiency due to interferences between its components.

The paper is organized as follows. In section 2 we introduce a nonlinear equa-

tion describing the field dynamics of few-cycle pulses interacting in a dielectric

medium with cubic nonlinearity, and illustrate that for the quasi-monochromatic

incident wave the governing equation reduces to a system of four coupled equa-

tions for slowly-varying envelopes of interacting harmonics. We show that slowly

varying amplitude approximation does not account for this effect. In the fol-

lowing section 3, we normalize the field equation and provide physical estimates

of the strength of diffraction, dispersion or nonlinearity for few-cycle pulses in

terahertz and near IR spectral ranges.
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We then analyze in detail nonlinear harmonic generation of high-power pulses

in thin layers, when dispersion and diffraction are relatively weak. We obtain

a solution of the field equation for pulse reflection from the perfect metal mir-

ror using the method of successive approximations and visualize results with

numerical simulations. We find that the efficiency of the third harmonics gener-

ation is significantly affected by the interaction of counter-propagating pulses in

the nonlinear layer and depends on layer thickness and duration of the incident

pulse. Finally, we present conclusions in Sec. 4.

2. Nonlinear equation for few-cycle pulses

We aim to investigate the evolution of few-cycle light pulses in a nonlin-

ear dielectric layer. The traditional method of slowly varying envelope is not

suitable to describe propagation of few-cycle pulses in optical media, since the

concept of wave envelope becomes physically meaningless. Therefore the dy-

namics of either the radiation field itself or its spatial-temporal spectra need to

be considered for modeling of nonlinear optical effects for few-cycle waves.

For a linearly polarized paraxial wave normally incident on a dielectric layer,

and assuming that the pulse spectrum is in the transparency range of the non-

linear dielectric, the wave equation can be written as [19, 20, 18, 25]:

∂2E

∂z2
+Δ⊥E − N0

2

c2
∂2E

∂t2
+

2N0

c
a
∂4E

∂t4
− 2N0

c
g
∂2E3

∂t2
= 0. (1)

Here E is the amplitude of the electrical field, z is the propagation direction,

Δ⊥ = ∂2

∂x2 + ∂2

∂y2 is the transverse Laplace operator, t is time, g = 2n2/c, n2

is the nonlinear coefficient, and c is the light velocity in vacuum. Parameters

N0 and a characterize the typical nonresonant dependence of linear dielectric

refractive index within its transparency range,

n2 = N0
2 + 2cN0aω

2, (2)

where ω is optical frequency.

The wave equation (1) describes propagation of transversely bounded op-

tical waves with broad spectra in both positive and opposite directions of z
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axis, including the case of counter-propagating wave interaction in nonlinear

media. The model can be extended to account for arbitrary polarization and

cases of more complex dispersion of linear refractive index and nonlinear media

response [28].

It is instructive to illustrate that this equation reduces to coupled envelope

equation in case of quasi-monochromatic input wave, taking into account the

effect of third-harmonic generation:

E (x, y, z, t) =
1

2

(
ε+ (x, y, z, t) exp [i (k0z − ω0t)]

+ ε
(3)
+ (x, y, z, t) exp [i(k(3ω0)z − 3ω0t)]

+ ε− (x, y, z, t) exp [−i(k0z + ω0t)]

+ ε
(3)
− (x, y, z, t) exp [−i (k(3ω0)z + 3ω0t)] + c.c.

)
(3)

where ε±, ε
(3)
± are the slowly varying envelopes of counter-propagating quasi-

monochromatic pulses with the carrier frequencies ω0 and 3ω0, respectively.

Considering low conversion efficiency, when |ε(3)± | � |ε±|, under typical assump-

tions of slowly varying envelope approximation the wave equation (1) can be

reduced to a system of four coupled equations for envelopes of interacting quasi-

monochromatic pulses at the fundamental and third harmonic [29]:

∂ε+
∂z

+
1

vg

∂ε+
∂t

+ i
β2

2

∂2ε+
∂t2

− β3

6

∂3ε+
∂t3

− iγ
(
|ε+|2 + 2|ε−|2

)
ε+ =

i

2k0
Δ⊥ε+ ,

∂ε−
∂z

− 1

vg

∂ε−
∂t

− i
β2

2

∂2ε−
∂t2

+
β3

6

∂3ε−
∂t3

+ iγ
(
|ε−|2 + 2|ε+|2

)
ε− = − i

2k0
Δ⊥ε−,

∂ε
(3)
+

∂z
+

1

v
(3)
g

∂ε
(3)
+

∂t
+ i

β
(3)
2

2

∂2ε
(3)
+

∂t2
− β

(3)
3

6

∂3ε
(3)
+

∂t3
− 3iγε3+e

iΔkz =
i

2k(3ω0)
Δ⊥ε

(3)
+ ,

∂ε
(3)
−

∂z
− 1

v
(3)
g

∂ε
(3)
−
∂t

− i
β
(3)
2

2

∂2ε
(3)
−

∂t2
+

β
(3)
3

6

∂3ε
(3)
−

∂t3
+ 3iγε3−e

iΔkz = − i

2k(3ω0)
Δ⊥ε

(3)
− ,

(4)

where vg, v
(3)
g = (∂k/∂ω)

−1
ω0,3ω0

are the group velocities of fundamental wave

and the third harmonic, respectively, βn, β
(3)
n = (∂nk/∂ωn)ω0,3ω0

, n = 2, 3;

γ = 3gω0/4, Δk = 3k(ω0)− k(3ω0), k(ω) = ωn(ω)/c.
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The coupled-mode equations (4) are derived using typical simplifications of

slowly varying envelopes and therefore do not include fast oscillating terms such

as ±9iγ|ε±|2ε∗∓ exp{3i [k(ω0)− k(3ω0)] z} in the third and the forth equations,

respectively. Therefore THG for quasi-monochromatic pulses is produced only

by co-directional pump wave, whereas a counter-directional pump wave leads

just to an additional phase modulation of generated wave [14]. However in sev-

eral studies of optical harmonics generation in thin films, multilayers, and micro-

resonators [12, 15, 30], it was shown that counter-directional wave can signifi-

cantly enhance the harmonic generation. Accordingly, in this work we employ

the general theoretical model Eq. (1), rather then the coupled-mode Eqs. (4).

Indeed, we show in the following that interactions of counter-propagating waves

can significantly affect THG in thin nonlinear films on top of a metal mirror.

3. Third harmonic generation

3.1. Solution for few-cycle pulses

In order to solve equation (1), we first perform normalization by introducing

new dimensionless variables:

E′ =
E

E+0
, t′ =

4t

T+c
, z′ =

z

L0
,Δ′⊥ =

Δ⊥
ρ2

(5)

where E+0 is the maximum of the incident forward wave E+ and ρ is its trans-

verse size at the boundary of nonlinear media, T+c is its central oscillation

period, L0 is the distance of the order of wavelength. Using new variables, the

model equation is written in the following form:

∂2E

∂z2
+

L2
0

LdifLw
Δ⊥E − L2

0

L2
w

∂2E

∂t2
+ 2

L2
0

LdispLw

∂4E

∂t4
− 2

L2
0

LnlLw

∂2E3

∂t2
= 0, (6)

where

Lw =
cT+c

4N0
, Ldisp =

T 3
+c

64a
, Ldif =

ρ2

Lw
, Lnl =

T+cc

8n2E2
0

=
T+cc

4n2I
, (7)

and I is the intensity of light. In Eq. (6) and in the following we omit the

symbol ,, ′ ” for the sake of brevity and take L0 = Lw.
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The chosen normalization equalizes the scales of fields and their derivatives

for the few-cycle pulses. The relations between coefficients L−1
w , L−1

disp, L
−1
dif , L

−1
nl

depend on the dielectric medium characteristics and initial radiation parameters

(pulse duration τ0, width ρ and its amplitude E+0 defining the pulse energy),

which in turn indicate if dispersion, diffraction or nonlinearity has a dominant

effect on the pulse evolution.

Let us estimate the normalization coefficients for dielectric materials in visi-

ble and far IR spectral regions. First we consider a fused silica with parameters

N0 = 1.45, a = 2.74 · 10−44 s3/cm, n2 = 2.9 · 10−16 cm2/W [18]. We note

that electron-hole plasma was registered for pulses with duration ∼ 100 fs at

800 nm wavelength and for intensity 1.3 · 1013W/cm2 in fused silica glass [31],

and other experimental studies support this observation [32]. In Ref. [33], it

was shown that critical intensity that leads to plasma formation in fused silica

reaches ∼ 3 · 1013 W/cm2 for pulses with a duration of 10 fs. However in our

current study, we consider fs pulses with duration down to one cycle (∼3 fs), and

in this regime only instantaneous cubic nonlinearity of dielectric media should

be dominant for peak intensities I = 3 · 1013 W/cm2, because for such short

pulses with accordingly lower energy the plasma formation would not occur.

For such a peak intensity, central wavelength λ+c = 780 nm, T+c = 3 fs, and

pulse transverse size ρ = 10 · λ+c, we obtain Lw = 0.14 μm, Ldisp = 108 μm,

Ldif = 464 μm, and Lnl = 23 μm.

We now perform estimates for terahertz pulses. We consider a crystalline

quartz with parameters N0 = 2.105, a = 3.3 · 10−39 s3/cm (obtained by inter-

polation of data from [34] using equation (2)) and n2 = 4.4 · 10−12 cm2/W [35].

Then, for a THz pulse with peak intensity I = 5 · 109 W/cm2, central wave-

length λ+c = 300 μm, T+c = 1 ps, and transverse size ρ = 10 · λ+c, we obtain

Lw = 36 μm, Ldisp = 47 mm, Ldif = 253 mm, and Lnl = 3.4 mm.

We see that under the physical conditions considered above, the nonlinear

effect dominates at the initial stage of wave propagation in the given condi-

tions. Therefore, we can neglect dispersion and diffraction at small propagation

lengths. The intensity of counter-propagating waves which does not lead to
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destruction of the media can be quite high [3] because of their extremely short

durations. However the interaction between counter-propagating pulses can

still be relatively weak due to the transience of pulse collision. Accordingly, we

choose the Picard’s method of successive approximations [36], in which Lw/Lnl

is a small parameter, as the analytical approach to approximately solve Eq. (6).

In Ref. [7] it was shown that effects for the third harmonic generation predicted

analytically by the perturbation theory are in good agreement with results ob-

tained numerically. Then, we seek a solution in the following form:

E = E(0) +
Lw

Lnl
E(1). (8)

In the following we consider propagation lengths of the order of Lw � Ldisp, Ldif .

Accordingly, we neglect both diffraction and dispersion of linear refractive in-

dex. This approximation is valid due to the small non-resonant dispersion of

dielectrics refractive index [18]. The presence of weak dispersion can be ac-

counted for if necessary by including them as a perturbation [7], to account for

the pulse reshaping involving asymmetry of the electric field profile and their

effect in the third harmonics generation efficiency. We do not perform such

analysis in the current paper to concentrate on the key nonlinear effects in the

regime of negligible dispersion. Then we consider the limit Ldisp = ∞ (disper-

sionless media) and Ldif =∞ (plane wave), substitute Eq. (8) into Eq. (6), and

obtain
∂2E(0)

∂z2
− ∂2E(0)

∂t2
= 0, (9)

∂2E(1)

∂z2
− ∂2E(1)

∂t2
− 2

∂2
(
E(0)

)3
∂t2

= 0. (10)

The zero-order Eq. (9) is linear and its solution can be written as a superposition

of forward and backward waves,

E(0) = E
(0)
+ (τ−) + E

(0)
− (τ+) , τ− = t− z, τ+ = t+ z. (11)

In this paper we model the pulse reflection from the perfect metal mirror located

at the boundary z = L̃ with nonlinear dielectric layer (thickness of the layer is
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Figure 1: Schematic of few-cycle pulse reflection from a metal mirror (located at z = L̃)

coated with a nonlinear dielectric layer (extending through 0 ≤ z ≤ L̃).

normalized to Lw), as illustrated in Fig. 1. In this case there appears a counter-

directional interaction between the front and the rear sections of the same pulse.

Based on the relations between plasmonic frequencies of the common reflective

materials [37] and frequency range considered in the following we assume per-

fect reflection from the mirror with zero accumulated phase, although it can

be included if needed in the formulas below. We neglect linear and nonlinear

reflections from the dielectric interface at z = 0 as well, assuming a low linear

refractive index contrast. More general analysis accounting for reflections, when

the layer forms a nonlinear Fabry-Perot interferometer, can also be performed

using the developed analytical techniques, however this is outside the scope of

the present paper.

The reflected wave at the dielectric boundary in the linear regime, corre-

sponding to the zero-order approximation, is found as:

E(0)
r (0, t) = −Ei

(
t− 2L̃

)
, (12)

where Ei(t) is the incident pulse amplitude profile.

We use Fourier method to solve the model equations. In order to solve

Eq. (10) for the first-order nonlinear correction, we reformulate it in the spectral
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domain,
∂2Ê(1)

∂z2
+ ω2Ê(1) = f (z, ω) , (13)

where Ê(1) = F (
E(1)

)
, hereinafter F ( ) denotes Fourier transform, and

f (z, ω) = −2ω2F
( [

E(0)
]3)

. (14)

We seek solution of Eq. (13) in the form

Ê(1) = a(z)eiωz + b(z)e−iωz. (15)

Here a(z) and b(z) are the complex amplitudes of the forward and backward

waves, respectively. According to this definition,

∂Ê(1)(z)

∂z
= iω

[
a(z)eiωz − b(z)e−iωz

]
, (16)

and therefore
∂a(z)

∂z
eiωz +

∂b(z)

∂z
e−iωz = 0. (17)

Now by substituting Eq. (15) and the first derivative of Eq. (16) into Eq. (13),

and taking Eq. (17) into account, we obtain explicit form of the function f (z, ω):

f (z, ω) = 2iω
∂a(z)

∂z
eiωz . (18)

The boundary conditions at the dielectric (assuming no reflections) and mirror

(complete reflection) interfaces are given as:

a(z = 0) = 0, Ê(1)(z = L̃) = 0. (19)

The expressions for forward and backward waves in the general form follow from

Eqs. (17) and (18):

a(z) =

∫ z

0

f (z′, ω)
1

2iω
e−iωz′

dz′ + ca,

b(z) = −
∫ z

0

f (z′, ω)
1

2iω
eiωz′

dz′ + cb,

(20)

where the constants ca and cb are determined from the boundary conditions (19):

ca = 0, cb = a(L̃) exp(2iωL̃)−
∫ L̃

0

f (z′, ω)
1

2iω
eiωz′

dz′, (21)
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It can be checked by direct substitution that Eqs. (15) and (20) are exact solu-

tions of Eq. (13).

Now we can determine the nonlinear contribution to the reflected wave at

the dielectric boundary z = 0:

E(1)
r (0, t) = F (b (z = 0)) = F (cb) =

=
1

2π

∫ ∞

−∞
e−iωt dω

1

2iω

∫ L̃

0

f (z′, ω)×
[
eiω(2L̃−z′) − eiωz′]

dz′ =

= −1

2

∫ L̃

0

dz′
∫ t

−∞

[
f
(
z′, t′ − 2L̃+ z′

)
− f (z′, t′ − z′)

]
dt′ .

(22)

By substituting the explicit form of the source f(z, t) (that follows from the

initial Eq. (10)) into Eq. (22), we derive the final expression that defines the

addition to the reflected wave due to the nonlinearity of the medium, which

together with Eq. (12) and according to Eq. (8) provides a general asymptotic

expression for the field of the wave reflected from metal mirror with nonlinear

dielectric layer:

Er (0, t) = −Ei

(
t− 2L̃

)
− Lw

Lnl

(∫ L̃

0

∂

∂t

[(
E(0)

(
z′, t− 2L̃+ z′

))3

−

−
(
E(0) (z′, t− z′)

)3
]
dz′

)
,

(23)

where

E(0) (z, t) = Ei (t− z)− Ei

(
t+ z − 2L̃

)
. (24)

To evaluate the changes due to the interaction with the counter-propagating

wave reflected from the mirror, we perform a comparison with the case of one-

directional pulse propagation through a nonlinear dielectric layer of thickness

2L̃, such that the total propagation distance through dielectric is the same as in

the reflection geometry considered above. We use the same analytical approach

as for the reflected pulse to derive the expression for the transmitted pulse. In

this case boundary conditions are:

a (z = 0) = 0, b
(
z = 2L̃

)
= 0. (25)
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and therefore the constants ca = 0 and cb =
∫ 2L̃

0
f (z′, ω) 1

2iω e
iωz′

dz′. Then we

can find the nonlinear contribution to the transmitted wave at the boundary

z = 2L̃:

E
(1)
t

(
2L̃, t

)
= F

(
a
(
z = 2L̃

)
eiω2L̃

)
=

= −1

2

∫ 2L̃

0

dz′
∫ t

−∞

[
f
(
z′, t′ − 2L̃+ z′

)]
dt′ .

(26)

Finally, by following the procedure described above we obtain the asymptotic

expression for the transmitted pulse:

Et

(
z = 2L̃, t

)
= E

(0)
t (z, t) + E

(1)
t (z, t) = Ei

(
t− 2L̃

)
−

−Lw

Lnl

(∫ 2L̃

0

∂

∂t

(
E(0)

(
z′, t+ z′ − 2L̃

))3

dz′
)
,

(27)

where

E(0) (z, t) = Ei (t− z) . (28)

In the following, we compare solutions in Eqs. (23) and (27) to distinguish the

effects due to counter-directional interactions.

3.2. Third harmonic generation by long pulses

For quasi-monochromatic incident pulses, the primary effects in thin layer

of nonlinear dielectric media are self-phase modulation and third-harmonic gen-

eration. For long pulses we can consider the limiting case of continuous waves

(CW), with the incident monochromatic electric fieldEi (t) = E(0) (t) = sin (ωt).

For such a wave the spectrum of the second term on the right-hand side of Eqs.

(23) and (27), that describe harmonic generation, can be rearranged as follows:

E
(1)
t

(
L̃, t

)
= E

(ω)
t + E

(3ω)
t + c.c. =

= −3

4
eiωte−2iωL̃L̃ω +

3

4
e3iωte−6iωL̃L̃ω + c.c.

(29)
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and

E(1)
r

(
L̃, t

)
= E(ω)

r + E(3ω)
r + c.c.

= − 3

32
ieiωt

(
8− e2iL̃ω − 8e−4iL̃ω + e−6iL̃ω + 24e−2iL̃ωL̃ω

)
+

1

32
ie3iωt

(
2− 9e−2iL̃ω + 18e−4iL̃ω − 18e−8iL̃ω + 9e−10iL̃ω

−2e−12iL̃ω + 24e−6iL̃ωL̃ω
)
+ c.c.

(30)

We now analyze the amplitudes of third-harmonic components defined through

the Fourier transform as:

Ê
(3ω)
t,r

(
L̃
)
=

∫ +∞

−∞
Et,r

(
L̃, t

)
e−i3ωt dt. (31)

The calculated third harmonic dependencies on the layer thickness L̃ are pre-

sented in Fig. 2. We observe an oscillatory dependence for wave reflected from

a mirror with nonlinear dielectric coating (solid line), with zero at L̃ � 0.86292

and first enhanced resonance at L̃ = 4/3. For comparison, the dashed line

indicates the harmonic which would be generated in a layer of width 2L̃ with

no reflections, i.e. when counter-propagating interactions are excluded. We

see that counter-propagating wave interactions can significantly (by two times)

enhance THG or reduce it to zero. This shows that even in CW regime, counter-

propagating interactions cannot be neglected in thin layers, and the full wave

Eq. (1) should be used instead of the conventional coupled-mode Eqs. (4). Such

investigation is useful to predict and understand effects for few cycle pulses.

However we note that CW regime is not practical from experimental point of

view, since high average power can lead to material damage even for pulses

with duration 120 fs in visible and IR spectral range [38], but in terahertz

range where large nonlinearities were predicted [35], we can expect the regime

described above for lower intensities without medium breakdown.

3.3. Spectral transformations of few-cycle pulses

We now study the reflection of an input Gaussian pulses of arbitrary dura-

tion:

Ei (t) = E(0) (t) = E0 exp

(
− t2

τ20

)
sin

(
πt

2

)
, (32)
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t r
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ω ω

Figure 2: Third-harmonic component of wave reflected from a mirror with a nonlinear

dielectric layer of thickness L̃ (blue solid line) compared with transmission through a layer of

thickness 2L̃ without counter-directional interactions (dashed red line).

t Ω

-1

1

(a) (b)

0τ

Figure 3: The incident pulse (a) amplitude of the temporal electric field profile Ei (t) and

(b) modulus of the spectrum |F (Ei (t))| vs. the pulse duration (energy of the pulse for each

duration is constant). t and Ω are normalized time and frequency, respectively.
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Figure 4: Spectrum changes of the reflected pulse δF due to the effect of cubic nonlinearity

vs. the pulse duration for different dielectric layer thickness (a) L̃ = 0.86292 and (b) L̃ = 4/3.

where τ0 = 4t0/Tc is the normalized pulse duration, t0 is the pulse duration in

fs, Tc is its central period. In numerical simulations, we keep the pulse energy,

W =

∫ +∞

−∞
E2

i (t
′) dt′, (33)

fixed (normalized to unity in dimensionless variables) by accordingly adjusting

initial pulse amplitude E0, to provide a comparison between pulses of different

duration. We consider the nonlinear coefficient value of Lw/Lnl = 0.006, which

satisfies the validity of Picard’s method of successive approximations used to

obtain the analytical solution.

First, we study the effect of varying the pulse duration. The incident electric

field profile vs. the pulse duration is shown in Fig. 3(a), and modulus of the

corresponding pulse spectrum, Fi(ω) = F (Ei (t)), is illustrated in Fig. 3(b).

We consider the range of pulse duration down to just one optical cycle duration

(τ0 = 1 in normalized units).

To characterize the pulse transformation due to the effect of cubic nonlinear-

ity, we plot in Fig. 4(a,b) the differences between modulus of the spectra of the

reflected and input radiation δF = ||Fr| − |Fi||, where Fr (ω) = F (Er (0, t)).

This spectral transformation can be directly measured experimentally, whereas a

reconstruction of the electric field profile is a challenging problem. In Fig. 4(a)

the dimensionless layer thickness corresponds to the zero reflection on triple

14
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Figure 5: Contributions due to counter-directional interactions to the spectrum changes of

the reflected pulse δS vs. the pulse duration for different dielectric layer thickness (a) L̃ =

0.86292 and (b) L̃ = 4/3.

frequency for long pulses (L̃ = 0.86292). Interestingly, in this case the third

harmonic of the central frequency gets suppressed even for ultra-short pulses.

In Fig. 4(b) the thickness corresponds to the maximum of reflected third har-

monic for long input pulse (L̃ = 4/3). In this regime strong third harmonic is

observed for long and intermediate pulse durations, whereas it gets shifted to

the higher frequency region for ultra-short pulses. The latter effect has a general

nature for short pulses [7].

We perform further analysis to distinguish the effects due to counter-directional

interactions by comparing pulse reflection from a mirror coated with a dielectric

layer with thickness L̃ and one-directional pulse transmission through a layer of

thickness 2L̃. Specifically, we determine the relative spectrum changes as

δS =
Sr (ω)− St (ω)

Sr (ω) + St (ω)
, (34)

where

Sr (ω) =
∣∣∣|Fr (ω)|2 − |Fi (ω)|2

∣∣∣ ,
St (ω) =

∣∣∣|Ft (ω)|2 − |Fi (ω)|2
∣∣∣ ,

Ft (ω) = F
(
Et

(
2L̃, t

))
is the spectrum of the wave that propagated through

a layer of thickness 2L̃ without counter-directional interactions determined by
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Figure 6: Contributions due to counter-directional interactions to the nonlinear phase

shift dFcd vs. the pulse duration for different dielectric layer thickness (a) L̃ = 0.86292 and

(b) L̃ = 4/3.

Eq. (27). We also identify a nonlinear phase shift due to the counter-directional

interactions,

dFcd = arg

(
Fr

Ft

)
. (35)

The results are presented in Figs. 5, 6. We see that there is a strong effect

of counter-propagating interactions on third-harmonic generation, which results

in its suppression [Fig. 5(a)] or enhancement [Fig. 5(b)] depending on the layer

thickness. There are also noticeable difference in higher-harmonic amplitudes

for ultra-short pulses, and associated differences in the nonlinear phase shifts

[Fig. 6].

We note however that nonlinear phase shifts are not visible at the funda-

mental frequency in Figs. 6(c,d). To investigate this further, it is instructive to

consider the limit of long pulses. Using expressions (29) and (30), we obtain

the nonlinear phase shift on fundamental frequency due to effects of self- and

cross-phase modulation:

Δφnl,t =
3

4
L̃ω

Lw

Lnl
(36)

Δφnl,r =
9

4
L̃ω

Lw

Lnl
(37)
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Figure 7: (a) Spectrum changes of the reflected pulse (δF ) vs. the nonlinear layer thickness

L̃, for the incident pulse duration τ0 = 1.2. (b) Reflected third harmonic vs. the thickness L̃

for different pulse durations.

We see that Δφnl,r is three times that of Δφnl,t, properly recovering the well-

established result for quasi-CW regime [29]. Using these expressions, we esti-

mate the phase shift due to counter-directional interactions as approximately

10−2 for Lw/Lnl = 0.006. Such value can be detected in experiment, although it

is not visible in Figs. 6(c,d) due to the color scale extending over large resonant

phase shifts at higher harmonics.

We further consider in more detail the high frequency generation depen-

dence on layer thickness. In Fig. 7(a) we plot the spectrum changes due to the

effect of cubic nonlinearity (δF ) for the pulse duration of τ0 = 1.2. For such

ultrashort pulse, the generation of the third harmonics reaches its minimum as

the maximum of spectral density is moved to the higher frequency region [7].

We observe that such harmonic generation increases for larger (but still of the

order of wavelength) layer thickness. Fig. 7(b) illustrates the dependence of

third-harmonic on the pulse duration and layer thickness. We see that the third

harmonic reaches maximum for short pulses with optimal two-cycle duration.
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4. Conclusions

We investigated theoretically few-cycle optical pulse reflection from a per-

fect metal mirror covered with a nonlinear dielectric layer, and developed a

general asymptotic analytical solution in the limit of negligible dispersion and

diffraction for small layer thickness. We identified nonlinear transformations of

the electric field profiles and optical spectra of the reflected pulses, and per-

formed comparison with the regime of one-directional propagation. We demon-

strated that nonlinear counter-directional interactions between the incident and

reflected pulse can enhance or fully suppress third-harmonic generation of the

central frequency, and also lead to increased spectral broadening for ultra-short

pulses. These results suggest a possibility to experimentally detect a fundamen-

tally important effect of counter-propagating interactions between the leading

and trailing sections of the pulse.
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