2,085 research outputs found

    Energy budget constraints on historical radiative forcing

    Get PDF
    Radiative forcing is a fundamental quantity for understanding anthropogenic and natural drivers of past and future climate change1, yet significant uncertainty remains in our quantification of radiative forcing and its model representation2,3,4. Here we use instrumental measurements of historical global mean surface temperature change and Earth’s total heat uptake, alongside estimates of the Earth’s radiative response, to provide a top-down energy budget constraint on historical (1861–1880 to near-present) effective radiative forcing of 2.3 W m−2 (1.7–3.0W m−2; 5–95% confidence interval). This represents a near 40% reduction in the 5–95% uncertainty range assessed by the IPCC Fifth Assessment Report2. Although precise estimates of effective radiative forcing in models do not widely exist, our results suggest that the effective radiative forcing may be too small in as many as one-third of climate models in the fifth phase of the Coupled Model Intercomparison Project. Improving model representation of radiative forcing should be a priority for modelling centres. This will reduce uncertainties in climate projections that have persisted for decades4,5

    Cloud adjustment and its role in CO 2 radiative forcing and climate sensitivity: a review

    Get PDF
    Understanding the role of clouds in climate change remains a considerable challenge. Traditionally, this challenge has been framed in terms of understanding cloud feedback. However, recent work suggests that under increasing levels of atmospheric carbon dioxide, clouds not only amplify or dampen climate change through global feedback processes, but also through rapid (days to weeks) tropospheric temperature and land surface adjustments. In this article, we use the Met Office Hadley Centre climate model HadGSM1 to review these recent developments and assess their impact on radiative forcing and equilibrium climate sensitivity. We estimate that cloud adjustment contributes ~0.8 K to the 4.4 K equilibrium climate sensitivity of this particular model. We discuss the methods used to evaluate cloud adjustments, highlight the mechanisms and processes involved and identify low level cloudiness as a key cloud type. Looking forward, we discuss the outstanding issues, such as the application to transient forcing scenarios. We suggest that the upcoming CMIP5 multi-model database will allow a comprehensive assessment of the significance of cloud adjustments in fully coupled atmosphere-ocean-general-circulation models for the first time, and that future research should exploit this opportunity to understand cloud adjustments/feedbacks in non-idealised transient climate change scenarios

    Aortic valve stenosis-multimodality assessment with PET/CT and PET/MRI

    Get PDF
    Aortic valve disease is the most common form of heart valve disease in developed countries and a growing healthcare burden with an ageing population. Transthoracic and transoesophageal echocardiography remains central to the diagnosis and surveillance of patients with aortic stenosis, providing gold standard assessments of valve haemodynamics and myocardial performance. However, other multimodality imaging techniques are being explored for the assessment of aortic stenosis, including combined PET/CT and PET/MR. Both approaches provide unique information with respect to disease activity in the valve alongside more conventional anatomic assessments of the valve and myocardium in this condition. This review investigates the emerging use of PET/CT and PET/MR to assess patients with aortic stenosis, examining how the complementary data provided by each modality may be used for research applications and potentially in future clinical practice

    New ophthalmosaurid ichthyosaurs from the European lower cretaceous demonstrate extensive ichthyosaur survival across the Jurassic–Cretaceous boundary

    Get PDF
    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to their total extinction at the beginning of the Late Cretaceous

    Effective radiative forcing in a GCM with fixed surface temperatures

    Get PDF
    Effective radiative forcing (ERF) is evaluated in the ACCESS1.0 General Circulation Model (GCM) with fixed land and sea‐surface‐temperatures as well as sea‐ice. The 4xCO2 ERF is 8.0 Wm‐2. In contrast, a typical ERF experiment with only fixed sea‐surface‐temperatures (SST) and sea‐ice gives rise to an ERF of only 7.0 Wm‐2. This difference arises due to the influence of land warming in the commonly used fixed‐SST ERF experimental design, which results in: (i) increased emission of longwave radiation to space from the land surface (‐0.45 Wm‐2) and troposphere (‐0.90 Wm‐2), (ii) reduced land snow‐cover and albedo (+0.17 Wm‐2), (iii) increased water‐vapour (+0.49 Wm‐2), and (iv) a cloud adjustment (‐0.26 Wm‐2) due to reduced stability and cloudiness over land (positive ERF) counteracted by increased lower tropospheric stability and marine cloudiness over oceans (negative ERF) . The sum of these radiative adjustments to land warming is to reduce the 4xCO2 ERF in fixed‐SST experiments by ∼1.0 Wm‐2. CO2 stomatal effects are quantified and found to contribute just over half of the land warming effect and adjustments in the fixed‐SST ERF experimental design in this model. The basic physical mechanisms in response to land warming are confirmed in a solar ERF experiment. We test various methods that have been proposed to account for land warming in fixed‐SST ERFs against our GCM results and discuss their strengths and weaknesses

    A hybrid radiation detector for simultaneous spatial and temporal dosimetry

    Get PDF
    In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation

    Trajectories of self-rated health in people with diabetes: Associations with functioning in a prospective community sample

    Get PDF
    © 2013 Schmitz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Self-rated health (SRH) is a single-item measure that is one of the most widely used measures of general health in population health research. Relatively little is known about changes and the trajectories of SRH in people with chronic medical conditions. The aims of the present study were to identify and describe longitudinal trajectories of self-rated health (SRH) status in people with diabetes. Methods: A prospective community study was carried out between 2008 and 2011. SRH was assessed at baseline and yearly at follow-ups (n=1288). Analysis was carried out through trajectory modeling. The trajectory groups were subsequently compared at 4 years follow-up with respect to functioning. Results: Four distinct trajectories of SRH were identified: 1) 72.2% of the participants were assigned to a persistently good SRH trajectory; 2) 10.1% were assigned to a persistently poor SRH trajectory; 3) mean SRH scores changed from good to poor for one group (7.3%); while 4) mean SRH scores changed from poor to medium/good for another group (10.4%). Those with a persistently poor perception of health status were at higher risk for poor functioning at 4 years follow-up than those whose SRH scores decreased from good to poor. Conclusions: SRH is an important predictor for poor functioning in diabetes, but the trajectory of SRH seems to be even more important. Health professionals should pay attention to not only SRH per se, but also changes in SRH over time.This work was supported by Operating Grant MOP-84574 from the Canadian Institutes of Health Research (CIHR). GG was supported by a doctoral fellowship from the CIHR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore