521 research outputs found
Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits in northern Sinus Meridiani, Mars
We present detailed stratigraphic and spectral analyses that focus on a region in
northern Sinus Meridiani located between 1°N to 5°N latitude and 3°W to 1°E longitude.
Several stratigraphically distinct units are defined and mapped using morphologic
expression, spectral properties, and superposition relationships. Previously unreported
exposures of hydrated sulfates and Fe/Mg smectites are identified using MRO CRISM and
MEX OMEGA nearâinfrared (1.0 to 2.5 ”m) spectral reflectance observations. Layered
deposits with monohydrated and polyhydrated sulfate spectral signatures that occur in
association with a northeastâsouthwest trending valley are reexamined using highresolution
CRISM, HiRISE, and CTX images. Layers that are spectrally dominated by
monohydrated and polyhydrated sulfates are intercalated. The observed compositional
layering implies that multiple wetting events, brine recharge, or fluctuations in evaporation
rate occurred. We infer that these hydrated sulfateâbearing layers were unconformably
deposited following the extensive erosion of preexisting layered sedimentary rocks and
may postdate the formation of the sulfateâ and hematiteâbearing unit analyzed by the MER
Opportunity rover. Therefore, at least two episodes of deposition separated by an
unconformity occurred. Fe/Mg phyllosilicates are detected in units that predate the sulfateand
hematiteâbearing unit. The presence of Fe/Mg smectite in older units indicates that the
relatively low pH formation conditions inferred for the younger sulfateâ and hematitebearing
unit are not representative of the aqueous geochemical environment that prevailed
during the formation and alteration of earlier materials. Sedimentary deposits indicative of
a complex aqueous history that evolved over time are preserved in Sinus Meridiani, Mars
Phyllosilicate and Hydrated Sulfate Deposits in Meridiani
Several phyllosilicate and hydrated sulfate deposits in Meridiani have been mapped in detail with high resolution MRO CRISM [1] data. Previous studies have documented extensive exposures of outcrop in Meridiani (fig 1), or etched terrain (ET), that has been interpreted to be sedimentary in origin [e.g., 2,3]. These deposits have been mapped at a regional scale with OMEGA data and show enhanced hydration (1.9 m absorption) in several areas [4]. However, hydrated sulfate detections were restricted to valley exposures in northern Meridiani ET [5]. New high resolution CRISM images show that hydrated sulfates are present in several spatially isolated exposures throughout the ET (fig 1). The hydrated sulfate deposits in the valley are vertically heterogeneous with layers of mono and polyhydrated sulfates and are morphologically distinct from other areas of the ET. We are currently mapping the detailed spatial distribution of sulfates and searching for distinct geochemical horizons that may be traced back to differential ground water recharge and/or evaporative loss rates. The high resolution CRISM data has allowed us to map out several phyllosilicate deposits within the fluvially dissected Noachian cratered terrain (DCT) to the south and west of the hematite-bearing plains (Ph) and ET (fig 1). In Miyamoto crater, phyllosilicates are located within ~30km of the edge of Ph, which is presumably underlain by acid sulfate deposits similar to those explored by Opportunity. The deposits within this crater may record the transition from fluvial conditions which produced and/or preserved phyllosilicates deposits to a progressively acid sulfate dominated groundwater system in which large accumulations of sulfate-rich evaporites were deposited
Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex
The electrophysiological basis for higher brain activity during rest and internally directed cognition within the human default mode network
(DMN) remains largely unknown. Here we use intracranial recordings in
the human posteromedial cortex (PMC), a core node within the DMN,
during conditions of cued rest, autobiographical judgments, and
arithmetic processing. We found a heterogeneous profile of PMC
responses in functional, spatial, and temporal domains. Although the
majority of PMC sites showed increased broad gamma band activity
(30-180 Hz) during rest, some PMC sites, proximal to the retrosplenial
cortex, responded selectively to autobiographical stimuli. However, no
site responded to both conditions, even though they were located within
the boundaries of the DMN identified with resting-state functional
imaging and similarly deactivated during arithmetic processing. These
findings, which provide electrophysiological evidence for heterogeneity
within the core of the DMN, will have important implications for
neuroimaging studies of the DMN
Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars
Columbus crater in the Terra Sirenum region of the Martian southern highlands contains light-toned layered deposits with interbedded sulfate and phyllosilicate minerals, a rare occurrence on Mars. Here we investigate in detail the morphology, thermophysical properties, mineralogy, and stratigraphy of these deposits; explore their regional context; and interpret the crater's aqueous history. Hydrated mineral-bearing deposits occupy a discrete ring around the walls of Columbus crater and are also exposed beneath younger materials, possibly lava flows, on its floor. Widespread minerals identified in the crater include gypsum, polyhydrated and monohydrated Mg/Fe-sulfates, and kaolinite; localized deposits consistent with montmorillonite, Fe/Mg-phyllosilicates, jarosite, alunite, and crystalline ferric oxide or hydroxide are also detected. Thermal emission spectra suggest abundances of these minerals in the tens of percent range. Other craters in northwest Terra Sirenum also contain layered deposits and Al/Fe/Mg-phyllosilicates, but sulfates have so far been found only in Columbus and Cross craters. The region's intercrater plains contain scattered exposures of Al-phyllosilicates and one isolated mound with opaline silica, in addition to more common Fe/Mg-phyllosilicates with chlorides. A Late Noachian age is estimated for the aqueous deposits in Columbus, coinciding with a period of inferred groundwater upwelling and evaporation, which (according to model results reported here) could have formed evaporites in Columbus and other craters in Terra Sirenum. Hypotheses for the origin of these deposits include groundwater cementation of crater-filling sediments and/or direct precipitation from subaerial springs or in a deep (âŒ900 m) paleolake. Especially under the deep lake scenario, which we prefer, chemical gradients in Columbus crater may have created a habitable environment at this location on early Mars
Eavesdropping on Autobiographical Memory: A Naturalistic Observation Study of Older Adultsâ Memory Sharing in Daily Conversations
The retrieval of autobiographical memories is an integral part of everyday social interactions. Prior laboratory research has revealed that older age is associated with a reduction in the retrieval of autobiographical episodic memories, and the ability to elaborate these memories with episodic details. However, how age-related reductions in episodic specificity unfold in everyday social contexts remains largely unknown. Also, constraints of the laboratory-based approach have limited our understanding of how autobiographical semantic memory is linked to older age. To address these gaps in knowledge, we used a smartphone application known as the Electronically Activated Recorder, or âEAR,â to unobtrusively capture real-world conversations over 4 days. In a sample of 102 cognitively normal older adults, we extracted instances where memories and future thoughts were shared by the participants, and we scored the shared episodic memories and future thoughts for their make-up of episodic and semantic detail. We found that older age was associated with a reduction in real-world sharing of autobiographical episodic and semantic memories. We also found that older age was linked to less episodically and semantically detailed descriptions of autobiographical episodic memories. Frequency and level of detail of shared future thoughts yielded weaker relationships with age, which may be related to the low frequency of future thoughts in general. Similar to laboratory research, there was no correlation between autobiographical episodic detail sharing and a standard episodic memory test. However, in contrast to laboratory studies, episodic detail production while sharing autobiographical episodic memories was weakly related to episodic detail production while describing future events, unrelated to working memory, and not different between men and women. Overall, our findings provide novel evidence of how older age relates to episodic specificity when autobiographical memories are assessed unobtrusively and objectively âin the wild.
- âŠ