984 research outputs found

    Identification of speeded and slowed familiar melodies by younger, middle-aged, and older musicians and nonmusicians

    Get PDF
    There is a range of tempos within which listeners can identify familiar tunes (around 0.8 to 6.0 notes/s). Faster and slower tunes are difficult to identify. The authors assessed fast and slow melody-identification thresholds for 80 listeners ages 17–79 years with expertise varying from musically untrained to professional. On fast-to-slow (FS) trials the tune started at a very fast tempo and slowed until the listener identified it. Slow-to-fast (SF) trials started slow and accelerated. Tunes either retained their natural rhythms or were stylized isochronous versions. Increased expertise led to better performance for both FS and SF thresholds (r = .45). Performance declined uniformly across the 62-year age range in the FS condition (r = .27). SF performance was unaffected by age. Although early encoding processes may slow with age, expertise has a greater effect. Musical expertise involves perceptual learning with melodies at a wide range of tempos

    Melody recognition at fast and slow tempos: Effects of age, experience, and familiarity

    Get PDF
    Eighty-one listeners defined by three age ranges (18–30, 31–59, and over 60 years) and three levels of musical experience performed an immediate recognition task requiring the detection of alterations in melodies. On each trial, a brief melody was presented, followed 5 sec later by a test stimulus that either was identical to the target or had two pitches changed, for a same–different judgment. Each melody pair was presented at 0.6 note/sec, 3.0 notes/sec, or 6.0 notes/sec. Performance was better with familiar melodies than with unfamiliar melodies. Overall performance declined slightly with age and improved substantially with increasing experience, in agreement with earlier results in an identification task. Tempo affected performance on familiar tunes (moderate was best), but not on unfamiliar tunes. We discuss these results in terms of theories of dynamic attending, cognitive slowing, and working memory in aging

    The importance of stratigraphic plays in the undiscovered resources of the UKCS

    Get PDF
    This paper analyses the demographics of existing Un ited Kingdom Continental Shelf (UKCS) fields and discoveries as a means of assessing which plays are likely to offer the greatest untapped potential for stratigraphic traps. The talk is illustrated with examples of proven and untested stratigraphic traps

    The remaining hydrocarbon potential of the UK Continental Shelf

    Get PDF
    The United Kingdom Continental Shelf (UKCS) has been a very successful exploration province in the last 38 years, with an average technical success rate of 31% from its 2150 exploration wells. Although the peak of exploration activity on the UKCS occurred during the 1980s and 1990s, there have been 41 technical successes from 82 wells in the last four years, representing an improved recent success rate of 50%. Estimates of undiscovered (yet-to-find) hydrocarbon volumes have been made from a database of prospects compiled over 20 years by the UK Government. This ‘bottom-up’ method provided an estimate of the yet-to-find resources at the end of 2002 of between 3.6 and 22.9 × 109 BOE recoverable. Methodology utilizing an inverse timescale to plot cumulative discovered volumes per year provides minimum estimates of between 4.5 and 9.5 × 109 BOE in place (c. 2.5 to 4.4 × 109 BOE recoverable). Pool size distribution methodology predicts that 11.5 × 109 BOE of in-place (c. 5.8 × 109 BOE recoverable) resources remain to be found on the entire UKCS. Geographically, the UK Central North Sea and Moray Firth area is predicted to contain the largest proportion of undiscovered resources (42%). Thirty-three per cent of the yet-to-find resources are judged to lie within the Atlantic Margin region. Eighty-three per cent of existing UKCS fields and discoveries are located within structural traps. The majority of stratigraphic and combination traps occur in association with syn-rift (Upper Jurassic) and post-rift plays. Many of the major discoveries in these traps were found serendipitously, and there has been relatively little direct exploration for stratigraphic plays. In the UK North Sea, there are few substantial remaining structural traps, except at considerable depth with attendant reservoir quality, high-pressure and high-temperature risks. The future of exploration is believed to lie with the search for subtle stratigraphic traps. Deep-water sandstone stratigraphic plays within the syn- and post-rift sequences offer the greatest potential for substantial new resources

    The role of Schizosaccharomyces pombe SUMO ligases in genome stability

    Get PDF
    SUMOylation is a post-translational modification that affects a large number of proteins, many of which are nuclear. While the role of SUMOylation is beginning to be elucidated, it is clear that understanding the mechanisms that regulate the process is likely to be important. Control of the levels of SUMOylation is brought about through a balance of conjugating and deconjugating activities, i.e. of SUMO (small ubiquitin-related modifier) conjugators and ligases versus SUMO proteases. Although conjugation of SUMO to proteins can occur in the absence of a SUMO ligase, it is apparent that SUMO ligases facilitate the SUMOylation of specific subsets of proteins. Two SUMO ligases in Schizosaccharomyces pombe, Pli1 and Nse2, have been identified, both of which have roles in genome stability. We report here on a comparison between the properties of the two proteins and discuss potential roles for the proteins

    qq-Classical orthogonal polynomials: A general difference calculus approach

    Full text link
    It is well known that the classical families of orthogonal polynomials are characterized as eigenfunctions of a second order linear differential/difference operator. In this paper we present a study of classical orthogonal polynomials in a more general context by using the differential (or difference) calculus and Operator Theory. In such a way we obtain a unified representation of them. Furthermore, some well known results related to the Rodrigues operator are deduced. A more general characterization Theorem that the one given in [1] and [2] for the q-polynomials of the q-Askey and Hahn Tableaux, respectively, is established. Finally, the families of Askey-Wilson polynomials, q-Racah polynomials, Al-Salam & Carlitz I and II, and q-Meixner are considered. [1] R. Alvarez-Nodarse. On characterization of classical polynomials. J. Comput. Appl. Math., 196:320{337, 2006. [2] M. Alfaro and R. Alvarez-Nodarse. A characterization of the classical orthogonal discrete and q-polynomials. J. Comput. Appl. Math., 2006. In press.Comment: 18 page

    PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae

    No full text
    The supernova (SN) PTF11iqb was initially classified as a Type IIn event caught very early after explosion. It showed narrow Wolf–Rayet (WR) spectral features on day 2 (as in SN 1998S and SN 2013cu), but the narrow emission weakened quickly and the spectrum morphed to resemble Types II-L and II-P. At late times, H? exhibited a complex, multipeaked profile reminiscent of SN 1998S. In terms of spectroscopic evolution, we find that PTF11iqb was a near twin of SN 1998S, although with somewhat weaker interaction with circumstellar material (CSM) at early times, and stronger interaction at late times. We interpret the spectral changes as caused by early interaction with asymmetric CSM that is quickly (by day 20) enveloped by the expanding SN ejecta photosphere, but then revealed again after the end of the plateau when the photosphere recedes. The light curve can be matched with a simple model for CSM interaction (with a mass-loss rate of roughly 10?4 M? yr?1) added to the light curve of a normal SN II-P. The underlying plateau requires a progenitor with an extended hydrogen envelope like a red supergiant at the moment of explosion, consistent with the slow wind speed (<80?km?s?1) inferred from narrow H? emission. The cool supergiant progenitor is significant because PTF11iqb showed WR features in its early spectrum – meaning that the presence of such WR features does not necessarily indicate a WR-like progenitor. Overall, PTF11iqb bridges SNe IIn with weaker pre-SN mass-loss seen in SNe II-L and II-P, implying a continuum between these types

    PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae

    No full text
    The supernova (SN) PTF11iqb was initially classified as a Type IIn event caught very early after explosion. It showed narrow Wolf–Rayet (WR) spectral features on day 2 (as in SN 1998S and SN 2013cu), but the narrow emission weakened quickly and the spectrum morphed to resemble Types II-L and II-P. At late times, H? exhibited a complex, multipeaked profile reminiscent of SN 1998S. In terms of spectroscopic evolution, we find that PTF11iqb was a near twin of SN 1998S, although with somewhat weaker interaction with circumstellar material (CSM) at early times, and stronger interaction at late times. We interpret the spectral changes as caused by early interaction with asymmetric CSM that is quickly (by day 20) enveloped by the expanding SN ejecta photosphere, but then revealed again after the end of the plateau when the photosphere recedes. The light curve can be matched with a simple model for CSM interaction (with a mass-loss rate of roughly 10?4 M? yr?1) added to the light curve of a normal SN II-P. The underlying plateau requires a progenitor with an extended hydrogen envelope like a red supergiant at the moment of explosion, consistent with the slow wind speed (<80?km?s?1) inferred from narrow H? emission. The cool supergiant progenitor is significant because PTF11iqb showed WR features in its early spectrum – meaning that the presence of such WR features does not necessarily indicate a WR-like progenitor. Overall, PTF11iqb bridges SNe IIn with weaker pre-SN mass-loss seen in SNe II-L and II-P, implying a continuum between these types

    Theory of nonlinear Landau-Zener tunneling

    Full text link
    A nonlinear Landau-Zener model was proposed recently to describe, among a number of applications, the nonadiabatic transition of a Bose-Einstein condensate between Bloch bands. Numerical analysis revealed a striking phenomenon that tunneling occurs even in the adiabatic limit as the nonlinear parameter CC is above a critical value equal to the gap VV of avoided crossing of the two levels. In this paper, we present analytical results that give quantitative account of the breakdown of adiabaticity by mapping this quantum nonlinear model into a classical Josephson Hamiltonian. In the critical region, we find a power-law scaling of the nonadiabatic transition probability as a function of C/V−1C/V-1 and α\alpha , the crossing rate of the energy levels. In the subcritical regime, the transition probability still follows an exponential law but with the exponent changed by the nonlinear effect. For C/V>>1C/V>>1, we find a near unit probability for the transition between the adiabatic levels for all values of the crossing rate.Comment: 9 figure

    Collective excitations of trapped Bose condensates in the energy and time domains

    Full text link
    A time-dependent method for calculating the collective excitation frequencies and densities of a trapped, inhomogeneous Bose-Einstein condensate with circulation is presented. The results are compared with time-independent solutions of the Bogoliubov-deGennes equations. The method is based on time-dependent linear-response theory combined with spectral analysis of moments of the excitation modes of interest. The technique is straightforward to apply, is extremely efficient in our implementation with parallel FFT methods, and produces highly accurate results. The method is suitable for general trap geometries, condensate flows and condensates permeated with vortex structures.Comment: 6 pages, 3 figures small typos fixe
    • …
    corecore