335 research outputs found
Explosive dome eruptions modulated by periodic gas-driven inflation
Volcan Santiaguito (Guatemala) "breathes" with extraordinary regularity as the edifice's conduit system accumulates free gas, which periodically vents to the atmosphere. Periodic pressurization controls explosion timing, which nearly always occurs at peak inflation, as detected with tiltmeters. Tilt cycles in January 2012 reveal regular 26 ± 6 min inflation/deflation cycles corresponding to at least ~101 kg/s of gas fluxing the system. Very long period (VLP) earthquakes presage explosions and occur during cycles when inflation rates are most rapid. VLPs locate ~300 m below the vent and indicate mobilization of volatiles, which ascend at ~50 m/s. Rapid gas ascent feeds pyroclast-laden eruptions lasting several minutes and rising to ~1 km. VLPs are not observed during less rapid inflation episodes; instead, gas vents passively through the conduit producing no infrasound and no explosion. These observations intimate that steady gas exsolution and accumulation in shallow reservoirs may drive inflation cycles at open-vent silicic volcanoes. Key Points Regular 26 min inflation/deflation cycles are observed at silicic volcanoInflation rates control whether volcano explodes or passively degassesLocation of gas reservoir and flux of gas through the volcano are quantifie
Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux-CME Mass Correlation
In an effort to examine the relationship between flare flux and corresponding
CME mass, we temporally and spatially correlate all X-ray flares and CMEs in
the LASCO and GOES archives from 1996 to 2006. We cross-reference 6,733 CMEs
having well-measured masses against 12,050 X-ray flares having position
information as determined from their optical counterparts. For a given flare,
we search in time for CMEs which occur 10-80 minutes afterward, and we further
require the flare and CME to occur within +/-45 degrees in position angle on
the solar disk. There are 826 CME/flare pairs which fit these criteria.
Comparing the flare fluxes with CME masses of these paired events, we find CME
mass increases with flare flux, following an approximately log-linear, broken
relationship: in the limit of lower flare fluxes, log(CME mass)~0.68*log(flare
flux), and in the limit of higher flare fluxes, log(CME mass)~0.33*log(flare
flux). We show that this broken power-law, and in particular the flatter slope
at higher flare fluxes, may be due to an observational bias against CMEs
associated with the most energetic flares: halo CMEs. Correcting for this bias
yields a single power-law relationship of the form log(CME mass)~0.70*log(flare
flux). This function describes the relationship between CME mass and flare flux
over at least 3 dex in flare flux, from ~10^-7 to 10^-4 W m^-2.Comment: 28 pages, 16 figures, accepted to Solar Physic
On manifolds with nonhomogeneous factors
We present simple examples of finite-dimensional connected homogeneous spaces
(they are actually topological manifolds) with nonhomogeneous and nonrigid
factors. In particular, we give an elementary solution of an old problem in
general topology concerning homogeneous spaces
Robo1 regulates semaphorin signaling to guide the migration of cortical interneurons through the ventral forebrain
Cortical interneurons, generated predominantly in the medial ganglionic eminence, migrate around and avoid the developing striatum in the subpallium en route to the cortex. This is attributable to the chemorepulsive cues of class 3 semaphorins expressed in the striatal mantle and acting through neuropilin (Nrp1 and Nrp2) receptors expressed in these cells. Cortical interneurons also express Robo receptors, and we show here that in mice lacking Robo1, but not Robo2, these cells migrate aberrantly through the striatum. In vitro experiments demonstrated that interneurons lacking Robo1 function are significantly less responsive to the effects of semaphorins. Failure to respond to semaphorin appears to be attributable to a reduction in Nrp1 and PlexinA1 receptors within these cells. Biochemical studies further demonstrated that Robo1 binds directly to Nrp1, but not to semaphorins, and this interaction is mediated by a region contained within its first two Ig domains. Thus, we show for the first time that Robo1 interacts with Nrp1 to modulate semaphorin signaling in the developing forebrain and direct the migration of interneurons through the subpallium and into the cortex
An aggravated trajectory of depression and anxiety co-morbid with hepatitis C: : A 21 to 62 month follow-up study in 61 South Australian outpatients
BACKGROUND: This study aimed to explore the course of depression and anxiety in chronic hepatitis C patients. METHODS: Data were combined from two studies: (1) Hospital Anxiety and Depression Scale (HADS) scores in 395 consecutive Australian outpatients from 2006 to 2010 formed the baseline measurement; and (2) Depression Anxiety Stress Scales (DASS) scores in a survey of a sub-sample of these patients in 2011 formed the follow-up measurement. After converting DASS to HADS scores, changes in symptom scores and rates of case-ness (≥8), and predictors of follow-up symptoms were assessed. RESULTS: Follow-up data were available for 61 patients (70.5% male) whose age ranged from 24.5 to 74.6 years (M=45.6). The time to follow-up ranged from 20.7 to 61.9 months (M=43.8). Baseline rates of depression (32.8%) and anxiety (44.3%) increased to 62.3% and 67.2%, respectively. These findings were confirmed, independent of the conversion, by comparing baseline HADS and follow-up DASS scores with British community norms. Baseline anxiety and younger age predicted depression, while baseline anxiety, high school non-completion, and single relationship status predicted anxiety. CONCLUSION: This study demonstrated a worsening trajectory of depression and anxiety. Further controlled and prospective research in a larger sample is required to confirm these findings
A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability
Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and
Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer
the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the
solar corona and farther away in the interplanetary medium. The method, based
on the conservation principle of magnetic helicity, uses the relative magnetic
helicity of the solar source region as input estimates, along with the radius
and length of the corresponding CME flux rope. The method was initially applied
to cylindrical force-free flux ropes, with encouraging results. We hereby
extend our framework along two distinct lines. First, we generalize our
formalism to several possible flux-rope configurations (linear and nonlinear
force-free, non-force-free, spheromak, and torus) to investigate the dependence
of the resulting CME axial magnetic field on input parameters and the employed
flux-rope configuration. Second, we generalize our framework to both Sun-like
and active M-dwarf stars hosting superflares. In a qualitative sense, we find
that Earth may not experience severe atmosphere-eroding magnetospheric
compression even for eruptive solar superflares with energies ~ 10^4 times
higher than those of the largest Geostationary Operational Environmental
Satellite (GOES) X-class flares currently observed. In addition, the two
recently discovered exoplanets with the highest Earth-similarity index, Kepler
438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion
due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic
fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89
Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals
High-order derivatives of analytic functions are expressible as Cauchy
integrals over circular contours, which can very effectively be approximated,
e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius
of convergence is equal, numerical stability strongly depends on r. We give a
comprehensive study of this effect; in particular we show that there is a
unique radius that minimizes the loss of accuracy caused by round-off errors.
For large classes of functions, though not for all, this radius actually gives
about full accuracy; a remarkable fact that we explain by the theory of Hardy
spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and
by the saddle-point method of asymptotic analysis. Many examples and
non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature
rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat
Phase space theory of Bose-Einstein condensates and time-dependent modes
A phase space theory approach for treating dynamical behaviour of
Bose-Einstein condensates applicable to situations such as interferometry with
BEC in time-dependent double well potentials is presented. Time-dependent mode
functions are used, chosen so that one, two,.. highly occupied modes describe
well the physics of interacting condensate bosons in time dependent potentials
at well below the transition temperature. Time dependent mode annihilation,
creation operators are represented by time dependent phase variables, but time
independent total field annihilation, creation operators are represented by
time independent field functions. Two situations are treated, one (mode theory)
is where specific mode annihilation, creation operators and their related phase
variables and distribution functions are dealt with, the other (field theory)
is where only field creation, annihilation operators and their related field
functions and distribution functionals are involved. The paper focuses on the
hybrid approach, where the modes are divided up between condensate (highly
occupied) modes and non-condensate (sparsely occupied) modes. It is found that
there are extra terms in the Ito stochastic equations both for the stochastic
phases and stochastic fields, involving coupling coefficients defined via
overlap integrals between mode functions and their time derivatives. For the
hybrid approach both the Fokker-Planck and functional Fokker-Planck equations
differ from those derived via the correspondence rules, the drift vectors are
unchanged but the diffusion matrices contain additional terms involving the
coupling coefficients. Results are also presented for the combined approach
where all the modes are treated as one set.Comment: 83 pages. 0 figures. Version 3. Details to Appendices, typos
corrected, field theory treatment highlighted. To be published in Annals of
Physic
- …