1,359 research outputs found

    X-ray Properties of the Weak Seyfert 1 Nucleus in NGC 4639

    Get PDF
    We obtained observations of NGC 4639 with ASCA in order to investigate its mildly active Seyfert 1 nucleus at hard X-ray energies. Koratkar et al. (1995) have previously shown that the nucleus is a pointlike source in the ROSAT soft X-ray band. We detected in the 2-10 keV band a compact central source with a luminosity of 8.3E+40 erg/s. Comparison of the ASCA data with archival data taken with the Einstein and ROSAT satellites shows that the nucleus varies on timescales of months to years. The variability could be intrinsic, or it could be caused by variable absorption. More rapid variability, on a timescale of \~10^4 s, may be present in the ASCA data. The spectrum from 0.5 to 10 keV is well described by a model consisting of a lightly absorbed (N_H = 7.3E+20 cm^-2) power law with a photon index of 1.68. We find no evidence for significant emission from a thermal plasma; if present, it can account for no more than 25% of the flux in the 0.5-2.0 keV band. The limited photon statistics of our data do not allow us to place significant limits on the presence of iron K emission. (abridged)Comment: To appear in The Astrophysical Journal. LaTex, 18 pages including embedded figures and table

    Relaxed Phylogenetics and Dating with Confidence

    Get PDF
    In phylogenetics, the unrooted model of phylogeny and the strict molecular clock model are two extremes of a continuum. Despite their dominance in phylogenetic inference, it is evident that both are biologically unrealistic and that the real evolutionary process lies between these two extremes. Fortunately, intermediate models employing relaxed molecular clocks have been described. These models open the gate to a new field of “relaxed phylogenetics.” Here we introduce a new approach to performing relaxed phylogenetic analysis. We describe how it can be used to estimate phylogenies and divergence times in the face of uncertainty in evolutionary rates and calibration times. Our approach also provides a means for measuring the clocklikeness of datasets and comparing this measure between different genes and phylogenies. We find no significant rate autocorrelation among branches in three large datasets, suggesting that autocorrelated models are not necessarily suitable for these data. In addition, we place these datasets on the continuum of clocklikeness between a strict molecular clock and the alternative unrooted extreme. Finally, we present analyses of 102 bacterial, 106 yeast, 61 plant, 99 metazoan, and 500 primate alignments. From these we conclude that our method is phylogenetically more accurate and precise than the traditional unrooted model while adding the ability to infer a timescale to evolution

    Wnt activation downregulates olfactomedin-1 in Fallopian tubal epithelial cells:a microenvironment predisposed to tubal ectopic pregnancy

    Get PDF
    Ectopic pregnancy (EP) occurs when the embryo fails to transit to the uterus and attach to the luminal epithelium of the Fallopian tube (FT). Tubal EP is a common gynecological emergency and more than 95% of EP occurs in the ampullary region of the FT. In humans, Wnt activation and downregulation of olfactomedin-1 (Olfm-1) occur in the receptive endometrium and coincided with embryo implantation in vivo. Whether similar molecular changes happen in the FT leading to EP remains unclear. We hypothesized that activation of Wnt signaling downregulates Olfm-1 expression predisposes to EP. We investigated the spatiotemporal expression of Olfm-1 in FT from non-pregnant women and women with EP, and used a novel trophoblastic spheroid (embryo surrogate)-FT epithelial cell co-culture model (JAr and OE-E6/E7 cells) to study the role of Olfm-1 on spheroid attachment. Olfm-1 mRNA expression in the ampullary region of non-pregnant FT was higher (P0.05) in the follicular phase than in the luteal phase. Ampullary tubal Olfm-1 expression was lower in FT from women with EP compared to normal controls at the luteal phase (histological scoring (H-SCORE)1.30.2 vs 2.40.5; P0.05). Treatment of OE-E6/E7 with recombinant Olfm-1 (0.2-5 g/ml) suppressed spheroid attachment to OE-E6/E7 cells, while activation of Wnt-signaling pathway by Wnt3a or LiCl reduced endogenous Olfm-1 expression and increased spheroid attachment. Conversely, suppression of Olfm-1 expression by RNAi increased spheroid attachment to OE-E6/E7 cells. Taken together, Wnt activation suppresses Olfm-1 expression, and this may predispose a favorable microenvironment of the retained embryo in the FT, leading to EP in humans. © 2012 USCAP, Inc All rights reserved.link_to_OA_fulltex

    Chemical tagging can work: Identification of stellar phase-space structures purely by chemical-abundance similarity

    Get PDF
    Chemical tagging promises to use detailed abundance measurements to identify spatially separated stars that were in fact born together (in the same molecular cloud), long ago. This idea has not yielded much practical success, presumably because of the noise and incompleteness in chemical-abundance measurements. We have succeeded in substantially improving spectroscopic measurements with The Cannon, which has now delivered 15 individual abundances for ~100,000 stars observed as part of the APOGEE spectroscopic survey, with precisions around 0.04 dex. We test the chemical-tagging hypothesis by looking at clusters in abundance space and confirming that they are clustered in phase space. We identify (by the k-means algorithm) overdensities of stars in the 15-dimensional chemical-abundance space delivered by The Cannon, and plot the associated stars in phase space. We use only abundance-space information (no positional information) to identify stellar groups. We find that clusters in abundance space are indeed clusters in phase space. We recover some known phase-space clusters and find other interesting structures. This is the first-ever project to identify phase-space structures at survey-scale by blind search purely in abundance space; it verifies the precision of the abundance measurements delivered by The Cannon; the prospects for future data sets appear very good.Comment: accepted for publication in the Ap

    How Well Do All Patient Refined–Diagnosis-Related Groups Explain Costs of Pediatric Cancer Chemotherapy Admissions in the United States?

    Get PDF
    Purpose: State-based Medicaid programs have begun using All Patient Refined–Diagnosis-Related Groups (APR-DRGs) to determine hospital reimbursement rates. Medicaid provides coverage for 45% of childhood cancer admissions. This study aimed to examine how well APR-DRGs reflect admission costs for childhood cancer chemotherapy to inform clinicians, hospitals, and policymakers in the wake of policy changes.Methods: We identified 25,613 chemotherapy admissions in the 2009 Kids’ Inpatient Database. To determine how well APR-DRGs explain costs, we applied a hierarchic linear regression model of hospital costs, allowing for a variety of patient, hospital, and geographic confounders.Results: APR-DRGs proved to be the most important predictors of admission costs (P <.001), with costs increasing by DRG severity code. Diagnosis, age, and hospital characteristics also predicted costs above and beyond those explained by APR-DRGs. Compared with admissions for patients with acute lymphoblastic leukemia, costs of admissions for patients with acute myelomonocytic leukemia were 82% higher; non-Hodgkin lymphoma, 20% higher; Hodgkin lymphoma, 25% lower; and CNS tumors, 27% lower. Admissions for children who were 10 years of age or older cost 26% to 35% more than admissions for infants. Admissions to children’s hospitals cost 46% more than admissions to other hospital types.Conclusion: APR-DRGs developed for adults are applicable to childhood cancer chemotherapy but should be refined to account for cancer diagnosis and patient age. Possible policy and clinical management changes merit further study to address factors not captured by APR-DRGs

    S2COSMOS: evolution of gas mass with redshift using dust emission

    Get PDF
    We investigate the evolution of the gas mass fraction for galaxies in the COSMOS field using submillimetre emission from dust at 850ÎŒm. We use stacking methodologies on the 850 ÎŒm S2COSMOS map to derive the gas mass fraction of galaxies out to high redshifts, 0 ≀ z ≀ 5, for galaxies with stellar masses of 109.

    Two-photon Lithography for 3D Magnetic Nanostructure Fabrication

    Get PDF
    Ferromagnetic materials have been utilised as recording media within data storage devices for many decades. Confinement of the material to a two dimensional plane is a significant bottleneck in achieving ultra-high recording densities and this has led to the proposition of three dimensional (3D) racetrack memories that utilise domain wall propagation along nanowires. However, the fabrication of 3D magnetic nanostructures of complex geometry is highly challenging and not easily achievable with standard lithography techniques. Here, by using a combination of two-photon lithography and electrochemical deposition, we show a new approach to construct 3D magnetic nanostructures of complex geometry. The magnetic properties are found to be intimately related to the 3D geometry of the structure and magnetic imaging experiments provide evidence of domain wall pinning at a 3D nanostructured junction

    Iron K line Variability in the Low-Luminosity AGN NGC 4579

    Get PDF
    We present results of new ASCA observations of the low-luminosity AGN (LLAGN) NGC 4579 obtained on 1998 December 18 and 28, and we report on detection of variability of an iron K emission line. The X-ray luminosities in the 2--10 keV band for the two observations are nearly identical (LX ≈\approx 2×1041\times10^{41} ergs/s), but they are ∌\sim35% larger than that measured in 1995 July by Terashima et al. An Fe K emission line is detected at 6.39±0.096.39\pm0.09 keV (source rest frame) which is lower than the line energy 6.73−0.12+0.136.73^{+0.13}_{-0.12} keV in the 1995 observation. If we fit the Fe lines with a blend of two Gaussians centered at 6.39 keV and 6.73 keV, the intensity of the 6.7 keV line decreases, while the intensity of the 6.4 keV line increases, within an interval of 3.5 yr. This variability rules out thermal plasmas in the host galaxy as the origin of the ionized Fe line in this LLAGN. The detection and variability of the 6.4 keV line indicates that cold matter subtends a large solid angle viewed from the nucleus and that it is located within ∌1\sim1 pc from the nucleus. It could be identified with an optically thick standard accretion disk. If this is the case, a standard accretion disk is present at the Eddington ratio of LBol/LEddington∌2×10−3L_{\rm Bol}/L_{\rm Eddington} \sim 2\times10^{-3}. A broad disk-line profile is not clearly seen and the structure of the innermost part of accretion disk remains unclear.Comment: 9 pages, 3 figures, To appear in the Astrophyscal Jounal Letter
    • 

    corecore