3,017 research outputs found
When evolution is the solution to pollution : key principles, and lessons from rapid repeated adaptation of killifish (Fundulus heteroclitus) populations
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Evolutionary Applications 10 (2017): 762–783, doi:10.1111/eva.12470.For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human-mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well-studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution-adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful “solution to pollution” because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.National Science Foundation Grant Numbers: DEB-1265282, OCE-1314567, DEB-1120263;
National Institutes of Environmental Health Sciences Grant Numbers: R01ES021934-01, P42ES007381;
Postdoctoral Research Program at the US Environmental Protection (US EPA);
Office of Research and Development;
Oak Ridge Institute for Science and Education (ORISE) Grant Number: DW92429801;
US Department of Energ
Cancer Cell-Extrinsic Roles for the Androgen Receptor in Prostate Cancer
Given the central role of the androgen receptor (AR) in prostate cancer cell biology, AR-targeted therapies have been the backbone of prostate cancer treatment for over 50 years. New data indicate that AR is expressed in additional cell types within the tumor microenvironment. Moreover, targeting AR for the treatment of prostate cancer has established side effects such as bone complications and an increased risk of developing cardiometabolic disease, indicating broader roles for AR. With the advent of novel technologies, such as single-cell approaches and advances in preclinical modeling, AR has been identified to have clinically significant functions in other cell types. In this mini-review, we describe new cancer cell-extrinsic roles for AR within the tumor microenvironment as well as systemic effects that collectively impact prostate cancer progression and patient outcomes
Role of Eddies in the Carbon Pump of Eastern Boundary Upwelling Systems, REEBUS, Cruise No. M156, 03.07. – 01.08.2019 Mindelo (Cap Verde) – Mindelo
Summary
The major goal of the RV METEOR cruise M156 to Cape Verdian waters and the Mauritanian upwelling area off West Africa was to contribute to a better quantitative understanding of the effects of mesoscale eddies on CO2 source/sink mechanisms and the biological carbon pump in eastern boundary upwelling areas as well as their effects to the oligotrophic periphery including the deep-sea floor. The cruise M156 (MOSES Eddy Study I) was conducted within the framework of the BMBF funded REEBUS project (Role of Eddies in the Carbon Pump of Eastern Boundary Upwelling Systems) by a consortium of physical, biological (benthic microbiology, bacterial plankton, protists) and biogeochemical oceanographers. Specific aims were i. the quantification of solute and particle fluxes within and at the periphery of eddies; ii. to determine the turnover of carbon species, air-sea gas exchange of CO2, iii. the determination of the protistan and bacterial plankton community structures in the surface layers of an eddy, and iv. to quantify the magnitude and variability of material fluxes to the seabed and turnover in the sediment underneath the eddy passage. To achieve these aims, the cruise had two major observing strategies: i. an intense benthic/pelagic program along the zonal eddy passage at 18°N. Along this corridor ranging from 24°20’ to 16°30’W, five benthic/pelagic stations (E1 to E5) in different water depths and distances from the Mauritanian coast were performed. The motivation for this survey has been to resolve zonal gradients in pelagic element cycling as well as of organic matter degradation and burial in the seabed, which in turn could potentially be linked with changes in eddy induced primary- and export production. ii. the detailed investigation of an individual eddy to investigate physical, biogeochemical and biological processes on meso- to submeso-scales (100km to 10m). Satellite data analysis was performed before and during the cruise to identify a suitable eddy from a combination of sea-level anomaly, ocean color as Chl-a proxy, and sea-surface temperature supplemented with shipboard current velocity measurements. A total of 171 stations were sampled. The water column program consists of 59 CTD casts, 29 MSS and 20 Marine Snow Catcher deployments. For biogeochemical measurements at the sea surface two deployments of a Lagrangian Surface Drifter and one Waveglider deployment were conducted. At the seafloor, we conducted 10 BIGO deployments. Ten seafloor imaging surveys were performed using the towed camera system OFOS, supplemented with 7 Multibeam and 1 Sidescan surveys. In deviation from the cruise proposal, the planned long-term deployment of a Lander, which was planned to record a time series of oxygen fluxes during the passage of an eddy, was not deployed due to a major delay in its design and manufacturing. The planned AUV (Girona 500) deployments at the shallow E5 station close to the Mauritanian coast station did also not take place. Despite moderate weather conditions, all deployments were successful, hence all the data and sample material aimed for has been achieved. It is to expect that as planned all scientific questions can be addressed. Especially in the synthesis of all REEBUS cruises and the consideration of data from earlier cruises (MSM17/4, M107) into this region a high scientific potential can be expected
Ryanodine receptor and FK506 binding protein 1 in the Atlantic killifish (Fundulus heteroclitus) : a phylogenetic and population-based comparison
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Aquatic Toxicology 192 (2017): 105-115, doi:10.1016/j.aquatox.2017.09.002.Non-dioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine receptors (RyR), microsomal Ca2+ channels of broad significance. Teleost fish may be important models for NDL PCB neurotoxicity, and we used sequencing databases to characterize teleost RyR and FK506 binding protein 12 or 12.6 kDa (genes FKBP1A; FKBP1B), which promote NDL PCB-triggered Ca2+ dysregulation. Particular focus was placed on describing genes in the Atlantic killifish (Fundulus heteroclitus) genome and searching available RNA-sequencing datasets for single nucleotide variants (SNV) between PCB tolerant killifish from New Bedford Harbor (NBH) versus sensitive killifish from Scorton Creek (SC), MA. Consistent with the teleost whole genome duplication (tWGD), killifish have six RyR genes, corresponding to a and b paralogs of mammalian RyR1, 2 and 3. The presence of six RyR genes was consistent in all teleosts investigated including zebrafish. Killifish have four FKBP1; one FKBP1b and three FKBP1a named FKBP1aa, FKBP1ab, likely from the tWGD and a single gene duplicate FKBP1a3 suggested to have arisen in Atherinomorphae. The RyR and FKBP1 genes displayed tissue and developmental stage-specific mRNA expression, and the previously uncharacterized RyR3, herein named RyR3b, and all FKBP1 genes were prominent in brain. We identified a SNV in RyR3b encoding missense mutation E1458D. In NBH killifish, 57% were heterozygous and 28% were homozygous for this SNV, whereas almost all SC killifish (94%) lacked the variant (n≥39 per population). The outlined sequence differences between mammalian and teleost RyR and FKBP1 together with outlined population differences in SNV frequency may contribute to our understanding of NDL PCB neurotoxicity.This research was supported by the KC Donnelly Research Externship made possible by the National Institute of Environmental Health Sciences’ Superfund Research Program (EBH) and the Superfund Research Programs at UC Davis (INP and EBH; P42ES004699) and Boston University (JJS, JVG, MEH, SIK; P42ES007381). Additional support was provided by the National Institute of Health (INP; R01 ES014901; and P01 AR052354) and by National Science Foundation collaborative research grants (MEH and SIK; DEB-1265282 and DEB-1120263). This research was also supported in part by an appointment (to BC) with the Postdoctoral Research Program at the U.S. Environmental Protection (US EPA) Office of Research and Development administered by the Oak Ridge Institute for Science and Education (ORISE) through Interagency Agreement No. DW92429801 between the U.S. Department of Energy and the US EPA
Treatment Outcomes in Patients With Metastatic Renal Cell Carcinoma With Sarcomatoid and/or Rhabdoid Dedifferentiation After Progression on Immune Checkpoint Therapy
BACKGROUND: Metastatic RCC with sarcomatoid and/or rhabdoid (S/R) dedifferentiation is an aggressive disease associated with improved response to immune checkpoint therapy (ICT). The outcomes of patients treated with VEGFR-targeted therapies (TT) following ICT progression have not been investigated.
PATIENTS AND METHODS: Retrospective review of 57 patients with sarcomatoid (S), rhabdoid (R), or sarcomatoid plus rhabdoid (S + R) dedifferentiation who received any TT after progression on ICT at an academic cancer center. Clinical endpoints of interest included time on TT, overall survival (OS) from initiation of TT, and objective response rate (ORR) by RECIST version 1.1. Multivariable models adjusted for epithelial histology, IMDC risk, prior VEGFR TT, and inclusion of cabozantinib in the post-ICT TT regimen.
RESULTS: 29/57 patients had S dedifferentiation and 19 had R dedifferentiation. The most frequently used TT was cabozantinib (43.9%) followed by selective VEGFR TT (22.8%). The median time on TT was 6.4 months for all, 6.1 months for those with S dedifferentiation, 15.6 months for R dedifferentiation, and 6.1 months for S + R dedifferentiation. Median OS from initiation of TT was 24.9 months for the entire cohort, and the ORR was 20.0%. Patients with R dedifferentiation had significantly longer time on TT than those with S dedifferentiation (HR 0.44, 95% CI, 0.21-0.94). IMDC risk was associated with OS.
CONCLUSIONS: A subset of patients with S/R dedifferentiation derive clinical benefit from TT after they have progressive disease on ICT. Patients with R dedifferentiation appeared to derive more benefit from TT than those with S dedifferentiation
Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans
The population genetic perspective is that the processes shaping genomic variation can be revealed only through simultaneous investigation of sequence polymorphism and divergence within and between closely related species. Here we present a population genetic analysis of Drosophila simulans based on whole-genome shotgun sequencing of multiple inbred lines and comparison of the resulting data to genome assemblies of the closely related species, D. melanogaster and D. yakuba. We discovered previously unknown, large-scale fluctuations of polymorphism and divergence along chromosome arms, and significantly less polymorphism and faster divergence on the X chromosome. We generated a comprehensive list of functional elements in the D. simulans genome influenced by adaptive evolution. Finally, we characterized genomic patterns of base composition for coding and noncoding sequence. These results suggest several new hypotheses regarding the genetic and biological mechanisms controlling polymorphism and divergence across the Drosophila genome, and provide a rich resource for the investigation of adaptive evolution and functional variation in D. simulans
Monitoring Glucocorticoid Receptor in Plasma-derived Extracellular Vesicles as a Marker of Resistance to Androgen Receptor Signaling Inhibition in Prostate Cancer
Disease progression following androgen ablation was shown to be associated with upregulation of the glucocorticoid receptor (GR). Longitudinal monitoring of GR expression in circulating extracellular vesicles (EV) may reflect changes in the tumor cell and facilitates detection of acquired resistance. We utilized LNCaP, LREX cells and a patient-derived xenograft, MDA PDX 322-2-6a, for in vitro and in vivo experiments. Plasma-derived EVs were isolated from patients with localized high-risk prostate cancer undergoing androgen ablation. The mRNA levels of GR in EVs and their responsive genes were detected by transcriptome analysis, qRT-PCR and the protein levels by Western blot analysis. We detected changes in GR expression at mRNA and protein levels in EVs derived from LNCaP and LREX cells in in vitro studies. In in vivo experiments, LNCaP and the PDX MDA 322-2-6a–bearing mice were treated with enzalutamide. GR levels in plasma-derived EVs were increased only in those tumors that did not respond to enzalutamide. Treatment of mice bearing enzalutamide-resistant tumors with a GR inhibitor in combination with enzalutamide led to a transient pause in tumor growth in a subset of tumors and decreased GR levels intracellular and in plasma-derived EVs. In a subgroup of patients with high-risk localized prostate cancer treated with androgen signaling inhibition, GR was found upregulated in matching tissue and plasma EVs. These analyses showed that GR levels in plasma-derived EVs may be used for monitoring the transition of GR expression allowing for early detection of resistance to androgen ablation treatment
High-throughput sequence analysis of variants of human cytomegalovirus strains Towne and AD169
The genomes of commonly used variants of human cytomegalovirus (HCMV) strains Towne and AD169 each contain a substantial mutation in which a region (UL/b′) at the right end of the long unique region has been replaced by an inverted duplication of a region from the left end of the genome. Using high-throughput technology, we have sequenced HCMV strain Towne (ATCC VR-977) and confirmed the presence of two variants, one exhibiting the replacement in UL/b′ and the other intact in this region. Both variants are mutated in genes RL13, UL1, UL40, UL130, US1 and US9. We have also sequenced a novel AD169 variant (varUC) that is intact in UL/b′ except for a small deletion that affects genes UL144, UL142, UL141 and UL140. Like other AD169 variants, varUC is mutated in genes RL5A, RL13, UL36 and UL131A. A subpopulation of varUC contains an additional deletion affecting genes IRS1, US1 and US2
JWST Pathfinder Telescope Integration
The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015
- …