4,217 research outputs found

    Tentative Evidence for Relativistic Electrons Generated by the Jet of the Young Sun-like Star DG Tau

    Full text link
    Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from AGN. We present data at 325 and 610 MHz taken with the GMRT of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass YSO at at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpret this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength (0.11 mG) and particle energy (4x10^40 erg), which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.Comment: 19 pages, 2 figures, accepted for publication in ApJ Letter

    A Unified Model of the Fermi Bubbles, Microwave Haze, and Polarized Radio Lobes: Reverse Shocks in the Galactic Center's Giant Outflows

    Get PDF
    The Galactic Center's giant outflows are manifest in three different, non-thermal phenomena: i) the hard-spectrum, \gamma-ray `Fermi Bubbles' emanating from the nucleus and extending to |b| ~ 50 degrees; ii) the hard-spectrum, total-intensity microwave (~ 20-40 GHz) `Haze' extending to |b| ~ 35 degrees in the lower reaches of the Fermi Bubbles; and iii) the steep spectrum, polarized, `S-PASS' radio (~ 2-20 GHz) Lobes that envelop the Bubbles and extend to |b| ~ 60 degrees. We find that the nuclear outflows inflate a genuine bubble in each Galactic hemisphere that has the classical structure, working outwards, of reverse shock, contact discontinuity, and forward shock. Expanding into the finite pressure of the halo and given appreciable cooling and gravitational losses, the contact discontinuity of each bubble is now expanding only very slowly. We find observational signatures in both hemispheres of giant, reverse shocks at heights of ~ 1 kpc above the nucleus; their presence ultimately explains all three of the non-thermal phenomena mentioned above. Synchrotron emission from shock-reaccelerated cosmic-ray electrons explains the spectrum, morphology, and vertical extent of the microwave Haze and the polarized radio Lobes. Collisions between shock-reaccelerated hadrons and denser gas in cooling condensations that form inside the contact discontinuity account for most of the Bubbles' \gamma-ray emissivity.Comment: Accepted for publication in the Astrophysical Journal. 14 figures. Qualitative results unchanged from vers. 1 but calculations made more robust and text clarifie

    Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study

    Get PDF
    © 2017 American Chemical Society. Basic oxygen furnace (BOF) steelmaking slag is enriched in potentially toxic V which may become mobilized in high pH leachate during weathering. BOF slag was weathered under aerated and air-excluded conditions for 6 months prior to SEM/EDS and μXANES analysis to determine V host phases and speciation in both primary and secondary phases. Leached blocks show development of an altered region in which free lime and dicalcium silicate phases were absent and Ca-Si-H was precipitated (CaCO 3 was also present under aerated conditions). μXANES analyses show that V was released to solution as V(V) during dicalcium silicate dissolution and some V was incorporated into neo-formed Ca-Si-H. Higher V concentrations were observed in leachate under aerated conditions than in the air-excluded leaching experiment. Aqueous V concentrations were controlled by Ca 3 (VO 4 ) 2 solubility, which demonstrate an inverse relationship between Ca and V concentrations. Under air-excluded conditions Ca concentrations were controlled by dicalcium silicate dissolution and Ca-Si-H precipitation, leading to relatively high Ca and correspondingly low V concentrations. Formation of CaCO 3 under aerated conditions provided a sink for aqueous Ca, allowing higher V concentrations limited by kinetic dissolution rates of dicalcium silicate. Thus, V release may be slowed by the precipitation of secondary phases in the altered region, improving the prospects for slag reuse

    Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory (PAO) has measured the spectrum and composition of the ultrahigh energy cosmic rays with unprecedented precision. We use these measurements to constrain their spectrum and composition as injected from their sources and, in turn, use these results to estimate the spectrum of cosmogenic neutrinos generated in their propagation through intergalactic space. We find that the PAO measurements can be well fit if the injected cosmic rays consist entirely of nuclei with masses in the intermediate (C, N, O) to heavy (Fe, Si) range. A mixture of protons and heavier species is also acceptable but (on the basis of existing hadronic interaction models) injection of pure light nuclei (p, He) results in unacceptable fits to the new elongation rate data. The expected spectrum of cosmogenic neutrinos can vary considerably, depending on the precise spectrum and chemical composition injected from the cosmic ray sources. In the models where heavy nuclei dominate the cosmic ray spectrum and few dissociated protons exceed GZK energies, the cosmogenic neutrino flux can be suppressed by up to two orders of magnitude relative to the all-proton prediction, making its detection beyond the reach of current and planned neutrino telescopes. Other models consistent with the data, however, are proton-dominated with only a small (1-10%) admixture of heavy nuclei and predict an associated cosmogenic flux within the reach of upcoming experiments. Thus a detection or non-detection of cosmogenic neutrinos can assist in discriminating between these possibilities.Comment: 10 pages, 7 figure

    Morphology of the normal human lens

    Get PDF
    Purpose. To provide a quantitative, morphologic description of differentiated lens fiber cells in all regions of aged normal human lenses. Methods. Transparent normal human lenses (age range, 44 to 71 years) were examined with correlative transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Vibratome sections allowed examination of internal structures, whereas dissected whole lenses revealed surface characteristics. Additionally, image analysis was used to measure cross-sectional areas of fiber cells. Results. Approximate regional dimensions (percentage of diameter and thickness, respectively) were determined for whole lenses : cortex 16%, 17% ; adult nucleus 24%, 21% ; juvenile nucleus 12%, 9% ; fetal nucleus 45%, 49% ; and embryonic nucleus 3%, 4%. Cortical cells were irregularly hexagonal, and the average cross-sectional area measured 24 ± 9 μm2. Adult nuclear cells were flattened with intricate membranous interdigitations and an area of 7 ± 2 μm2. Juvenile nuclear cells had an area of 14 ± 5 μm2. Fetal nuclear cells were rounded with an area of 35 ± 22 μm2. Embryonic nuclear cells also were rounded and had a variable area of 80 ± 68 μm2. Fiber cell cytoplasm in all lens regions appeared smooth in texture and homogeneous in staining density. Conclusions. Both TEM and SEM are necessary to obtain a complete description of fiber cells. Cross-sections of fibers give new insights into the lamellar organization of the lens, indicating that each region has characteristic cell shapes and sizes. Furthermore, average dimensions were used to demonstrate that the number of cells and approximate growth rates vary significantly between adjacent regions

    Correspondence to Elizabeth ( Bessie ) McCaw Boggs Taylor, September 7, 1879 - May 22, 1887

    Get PDF
    Correspondence to Elizabeth ( Bessie ) McCaw Boggs Taylor, September 7, 1879 - May 22, 1887. Box 2, Folder 4.https://digitalcommons.wofford.edu/littlejohnboggs/1014/thumbnail.jp

    Evidence for a very slow X-ray pulsar in 2S0114+650 from RXTE All-Sky Monitor Observations

    Full text link
    Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM) observations of the X-ray binary 2S0114+650 show modulations at periods close to both the optically derived orbital period (11.591 days) and proposed pulse period (~ 2.7 hr). The pulse period shows frequency and intensity variability during the more than 2 years of ASM observations analyzed. The pulse properties are consistent with this arising from accretion onto a rotating neutron star and this would be the slowest such period known. The shape of the orbital light curve shows modulation over the course of the entire orbit and a comparison is made with the orbital light curve of Vela X-1. However, the expected phase of eclipse, based on an extrapolation of the optical ephemeris, does not correspond with the observed orbital minimum. The orbital period derived from the ASM light curve is also slightly longer than the optical period.Comment: To be published in the Astrophysical Journal, 1999, volume 511. 9 figure

    Real time magnetic resonance assessment of septal curvature accurately tracks acute hemodynamic changes in pediatric pulmonary hypertension

    Get PDF
    International audienceBACKGROUND:This study assesses the relationship between septal curvature and mean pulmonary artery pressure and indexed pulmonary vascular resistance in children with pulmonary hypertension. We hypothesized that septal curvature could be used to estimate right ventricular afterload and track acute changes in pulmonary hemodynamics.METHODS AND RESULTS:Fifty patients with a median age of 6.7 years (range, 0.45-16.5 years) underwent combined cardiac catheterization and cardiovascular magnetic resonance. The majority had idiopathic pulmonary arterial hypertension (n=30); the remaining patients had pulmonary hypertension associated with repaired congenital heart disease (n=17) or lung disease (n=3). Mean pulmonary artery pressure and pulmonary vascular resistance were acquired at baseline and during vasodilation. Septal curvature was measured using real-time cardiovascular magnetic resonance. There was a strong correlation between mean pulmonary artery pressure and SCmin at baseline and during vasodilator testing (r=-0.81 and -0.85, respectively; P<0.01). A strong linear relationship also existed between pulmonary vascular resistance and minimum septal curvature indexed to cardiac output both at baseline and during vasodilator testing (r=-0.88 and -0.87, respectively; P<0.01). Change in septal curvature metrics moderately correlated with absolute change in mean pulmonary artery pressure and pulmonary vascular resistance, respectively (r=0.58 and -0.74; P<0.01). Septal curvature metrics were able to identify vasoresponders with a sensitivity of 83% (95% confidence interval, 0.36-0.99) and a specificity of 91% (95% confidence interval, 0.77-0.97), using the Sitbon criteria. Idiopathic pulmonary arterial hypertension subgroup analysis revealed 3 responders with ΔSCmin values of 0.523, 0.551, and 0.568. If the middle value of 0.551 is taken as a cutoff, the approximate sensitivity would be 67% and the specificity would be 93%.CONCLUSIONS:Septal curvature metrics are able to estimate right ventricular afterload and track acute changes in pulmonary hemodynamics during vasodilator testing. This suggests that septal curvature could be used for continuing assessment of load in pulmonary hypertension
    • …
    corecore