85 research outputs found

    Investigating multiscale meteorological controls and impact of soil moisture heterogeneity on radiation fog in complex terrain using semi-idealised simulations

    Get PDF
    Coupled surface–atmosphere high-resolution mesoscale simulations were carried out to understand meteorological processes involved in the radiation fog life cycle in a city surrounded by complex terrain. The controls of mesoscale meteorology and microscale soil moisture heterogeneity on fog were investigated using case studies for the city of ¯Otautahi / Christchurch, New Zealand. Numerical model simulations from the synop- tic to microscale were carried out using the Weather Research and Forecasting (WRF) model and the Parallelised Large-Eddy Simulation Model (PALM). Heterogeneous soil moisture, land use, and topography were included. The spatial heterogeneity of soil moisture was derived using Landsat 8 satellite imagery and ground-based me- teorological observations. Nine semi-idealised simulations were carried out under identical meteorological conditions. One contained homogeneous soil moisture of about 0.31 m3^3 m3^{−3}, with two other simulations of halved and doubled soil moisture to demonstrate the range of soil moisture impact. Another contained heterogeneous soil moisture derived from Landsat 8 imagery. For the other five simulations, the soil moisture heterogeneity magnitudes were amplified following the observed spatial distribution to aid our understanding of the impact of soil moisture heterogeneity. Analysis using pseudo-process diagrams and accumulated latent heat flux shows significant spatial heterogeneity of processes involved in the simulated fog. Our results showed that soil mois- ture heterogeneity did not significantly change the general spatial structure of near-surface fog occurrence, even when the heterogeneity signal was amplified and/or when the soil moisture was halved and doubled. However, compared to homogeneous soil moisture, spatial heterogeneity in soil moisture can lead to changes in fog duration. These changes can be more than 50 min, although they are not directly correlated with spatial variations in soil moisture. The simulations showed that the mesoscale (10 to 200 km) meteorology controls the location of fog occurrence, while soil moisture heterogeneity alters fog duration at the microscale on the order of 100 m to 1 km. Our results highlight the importance of including soil moisture heterogeneity for accurate spatiotemporal fog forecasting

    First principles calculations of the Shift Current Bulk Photovoltaic Effect in Ferroelectrics

    Get PDF
    We calculate the bulk photovoltaic response of the ferroelectrics BaTiO3_3 and PbTiO3_3 from first principles by applying "shift current" theory to the electronic structure from density functional theory. The first principles results for BaTiO3_3 reproduce eperimental photocurrent direction and magnitude as a function of light frequency, as well as the dependence of current on light polarization, demonstrating that shift current is the dominant mechanism of the bulk photovoltaic effect in BaTiO3_3. Additionally, we analyze the relationship between response and material properties in detail. The photocurrent does not depend simply or strongly on the magnitude of material polarization, as has been previously assumed; instead, electronic states with delocalized, covalent bonding that is highly asymmetric along the current direction are required for strong shift current enhancements. The complexity of the response dependence on both external and material parameters suggests applications not only in solar energy conversion, but to photocatalysis and sensor and switch type devices as well.Comment: First submitted April 2011, submitted PRL July 201

    Simulation of the spatial distribution of mineral dust and its direct radiative forcing over Australia

    Get PDF
    Direct radiative forcing by mineral dust is important as it significantly affects the climate system by scattering and absorbing short-wave and long-wave radiation. The multi-angle imaging spectro radiometer (MISR) and cloud–aerosol lidar with orthogonal polarisation (CALIOP) aerosol data are used to observe mineral dust distribution over Australia. In addition, the weather research and forecasting with chemistry (WRF/Chem) model is used to estimate direct radiative forcing by dust. At the surface, the model domain clear-sky short-wave and long-wave direct radiative forcing by dust averaged for a 6-month period (austral spring and summer) was estimated to be −0.67 W m−2 and 0.13 W m−2, respectively. The long-wave warming effect of dust therefore offsets 19.4% of its short-wave cooling effect. However, over Lake Eyre Basin where coarse particles are more abundant, the long-wave warming effect of dust offsets 60.9% of the short-wave cooling effect. At the top of the atmosphere (TOA), clear-sky short-wave and long-wave direct radiative forcing was estimated to be −0.26 W m−2 and −0.01 W m−2, respectively. This leads to a net negative direct radiative forcing of dust at the TOA, indicating cooling of the atmosphere by an increase in outgoing radiation. Short-wave and long-wave direct radiative forcing by dust is shown to have a diurnal variation due to changes in solar zenith angle and in the intensity of infrared radiation. Atmospheric heating due to absorption of short-wave radiation was simulated, while the interaction of dust with long-wave radiation was associated with atmospheric cooling. The net effect was cooling of the atmosphere near the surface (below 0.2 km), with warming of the atmosphere at higher altitudes

    The Community Foehn Classification Experiment

    Get PDF
    Strong winds crossing elevated terrain and descending to its lee occur over mountainous areas worldwide. Winds fulfilling these two criteria are called “foehn” in this paper although different names exist depending on region, sign of temperature change at onset, and depth of overflowing layer. They affect local weather and climate and impact society. Classification is difficult because other wind systems might be superimposed on them or share some characteristics. Additionally, no unanimously agreed-upon name, definition nor indications for such winds exist. The most trusted classifications have been performed by human experts. A classification experiment for different foehn locations in the Alps and different classifier groups addressed hitherto unanswered questions about the uncertainty of these classifications, their reproducibility and dependence on the level of expertise. One group consisted of mountain meteorology experts, the other two of Masters degree students who had taken mountain meteorology courses, and a further two of objective algorithms. Sixty periods of 48 hours were classified for foehn/no foehn at five Alpine foehn locations. The intra-human-classifier detection varies by about 10 percentage points (interquartile range). Experts and students are nearly indistinguishable. The algorithms are in the range of human classifications. One difficult case appeared twice in order to examine reproducibility of classified foehn duration, which turned out to be 50% or less. The classification dataset can now serve as a testbed for automatic classification algorithms, which - if successful - eliminate the drawbacks of manual classifications: lack of scalability and reproducibility

    Scale in education research: towards a multi-scale methodology

    Get PDF
    This article explores some theoretical and methodological problems concerned with scale in education research through a critique of a recent mixed-method project. The project was framed by scale metaphors drawn from the physical and earth sciences and I consider how recent thinking around scale, for example in ecosystems and human geography might offer helpful points and angles of view on the challenges of thinking spatially in education research. Working between the spatial metaphors of ecology scholars and the critiques of the human geographers, for example the hypercomplex social space in Lefebvre’s political-economic thinking and the fluid, simultaneous, multiple spatialities of Massey’s post-structuralism, I problematize space and scale in education research. Interweaving these geographical ideas with Giddens’ structuration and Bourdieu’s theory of practice, both of which employed what might be termed scale-bridging to challenge social science’s entrenched paradigms, leads me to reconsider what is possible and desirable in the study of education systems. Following the spatial turn in the social sciences generally, there is an outstanding need to theorise multi-scale methodology for education research

    The impact of research on policy: a case of qualifications reform

    Get PDF
    The relationship between research and policymaking has been discussed repeatedly. However, the debate tends to be in general, abstract terms or from a macro-economic perspective with any examples described in a fairly cursory way. Despite the inherent complexity of the research-policy interface, analyses tend to homogenize ‘research’ and ‘policy’ as coherent entities with discussions often focusing on products (research and policies) rather than on the relationships between producers (researchers and policy makers). Here we take one piece of research on qualifications that has influenced policy rhetoric over the last 5 years. We trace the career of the research from its production in the late 1990s in order to understand the conditions of its dormancy, reemergence and use over the ensuing years. The paper serves to document the case, which is important in its own right, but also proposes a typology of ways in which research gets adopted and adapted into policy
    corecore